Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-25
Design of a Reflectarray Antenna Using Graphene and Epsilon-Near-Zero Metamaterials in Terahertz Band
By
Progress In Electromagnetics Research Letters, Vol. 89, 113-119, 2020
Abstract
In this paper, a graphene-based reflectarray antenna using ENZ (Epsilon-Near-Zero) metamaterial at terahertz (THz) band is proposed, and the performance of its unitcell is investigated. Then, the phase distribution and radiation pattern of the antenna are examined. Benefiting from exceptional complex surface conductivity of graphene which is a novel 2-d material, the size reduction of reflectarray has been facilitated as a result of plasmonic mode propagation within the structure which in turn leads to an increase in propagation constant. Moreover, tunneling phenomenon in ENZ material, a kind of metamaterial which has a relative permittivity under 1, helps reduce the loss. Taking advantage of these outstanding features of both materials, the proposed reflectarray is designed to function at 2.5 THz and is composed of 150×150 elements with square-shape configuration. We have achieved 40 dB of gain using the combination of graphene and ENZ material in reflectarrays, and also it is the first that time they are used together in the reflectarray. This work mainly focuses on the impact of using ENZ material and graphene simultaneously which is not done before, then the results demonstrate that it has a considerable effect on increasing the reflectarray gain.
Citation
Sahereh Sahandabadi, Seyed Vahab Al-Din Makki, and Shahpour Alirezaee, "Design of a Reflectarray Antenna Using Graphene and Epsilon-Near-Zero Metamaterials in Terahertz Band," Progress In Electromagnetics Research Letters, Vol. 89, 113-119, 2020.
doi:10.2528/PIERL19120601
References

1. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley & Sons, 2007.
doi:10.1002/9780470178775

2. Carrasco, E., J. A. Encinar, and Y. Rahmat-Samii, "Reflectarray antennas: A review," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 16, 2016.

3. Headland, D., T. Niu, E. Carrasco, D. Abbott, S. Sriram, M. Bhaskaran, C. Fumeaux, and W. Withayachumnankul, "Terahertz reflectarrays and nonuniform metasurfaces," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 4, 1-18, 2017.
doi:10.1109/JSTQE.2016.2640452

4. Niu, T., W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, "Experimental demonstration of reflectarray antennas at terahertz frequencies," Opt. Express, Vol. 21, 2875-2889, 2013.
doi:10.1364/OE.21.002875

5. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-nearzero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, No. 15, 155410, 2007.
doi:10.1103/PhysRevB.75.155410

6. Massaouti, M., A. Basharin, M. Kafesaki, M. Acosta, R. Merino, V. Orera, E. Economou, C. Soukoulis, and S. Tzortzakis, "Eutectic epsilon-near-zero metamaterial terahertz waveguides," Optics Letters, Vol. 38, No. 7, 1140-1142, 2013.
doi:10.1364/OL.38.001140

7. Torres, V., V. Pacheco-Pena, P. Rodrıguez-Ulibarri, M. Navarro-Cıa, M. Beruete, M. Sorolla, and N. Engheta, "Terahertz epsilon-near-zero graded-index lens," Optics Express, Vol. 21, No. 7, 9156-9166, 2013.
doi:10.1364/OE.21.009156

8. Mousavi Roknabadi, S. M., A. Jafargholi, S. A. Mirtaheri, and M. Kamyab, "Easily implemented miniaturized ENZ metamaterial medium using spiral inductors," 20th Iranian Conference on Electric Engineering, Tehran, Iran, 2012.

9. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
doi:10.1126/science.1202691

10. Carrasco, E. and J. Perruisseau-Carrier, "Reflectarray antenna at terahertz using graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 253-256, 2013.
doi:10.1109/LAWP.2013.2247557

11. Carrasco, E., M. Tamagnone, and J. Perruisseau-Carrier, "Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection," Applied Physics Letters, Vol. 102, No. 10, 104103, 2013.
doi:10.1063/1.4795787

12. Biswas, S. R., C. E. Guti’errez, A. Nemilentsau, I.-H. Lee, S.-H. Oh, P. Avouris, and T. Low, "Tunable graphene metasurface reflectarray for cloaking, illusion, and focusing," Physical Review Applied, Vol. 9, No. 3, 034021, 2018.
doi:10.1103/PhysRevApplied.9.034021

13. Esquius-Morote, M., J. S. G’omez-D´ı, J. Perruisseau-Carrier, et al. "Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 1, 116-122, 2014.
doi:10.1109/TTHZ.2013.2294538

14. Deng, L., Y. Wu, C. Zhang, W. Hong, B. Peng, J. Zhu, and S. Li, "Manipulating of differentpolarized reflected waves with graphene-based plasmonic meta-surfaces in terahertz regime," Scientific Reports, Vol. 7, No. 1, 10558, 2017.
doi:10.1038/s41598-017-10726-y

15. Chang, Z., B. You, L.-S. Wu, M. Tang, Y.-P. Zhang, and J.-F. Mao, "A reconfigurable graphene reflectarray for generation of vortex thz waves," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1537-1540, 2016.
doi:10.1109/LAWP.2016.2519545

16. Gonzalez, D. G., G. E. Pollon, and J. F. Walker, "Microwave phasing structures for electromagnetically emulating reflective surfaces and focusing elements of selected geometry,", Patent US 4905014, Feb. 1990.

17. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronics Letters, Vol. 29, No. 8, 657-658, April 1993.
doi:10.1049/el:19930440

18. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452

19. Novotny, L. and B. Hecht, Principles of Nano-Optics, Cambridge University Press, 2006.
doi:10.1017/CBO9780511813535

20. Pacheco-Pena, V., N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, "Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies," Physical Review Applied, Vol. 8, 034036, 2017.
doi:10.1103/PhysRevApplied.8.034036

21. Morabito, A. F., L. Di Donato, and T. Isernia, "Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 59-67, 2018.
doi:10.1109/MAP.2018.2796445

22. Silveirinha, M. G., A. Alu, B. Edwards, and N. Engheta, "Overview of theory and applications of epsilon-near-zero materials," Proc. URSI General Assembly, 2008.