Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-28
Evaluation of the Flux Linkage Between Equally Sized Circular Loops Placed on a Layered Soil
By
Progress In Electromagnetics Research Letters, Vol. 89, 127-132, 2020
Abstract
This paper presents an efficient method for evaluating the flux linkage between two circular loops located on the top surface of a plane multilayer soil. The method consists of a rigorous procedure, which leads to expressing the flux as a sum of products of Bessel functions. First, the integral representation for the mutual inductance is cast into a form where the integration range is continued to the negative real axis. Subsequently, the non-oscillating part of the integrand is replaced with a rational approximation, arising from using a well-known least squares-based fitting algorithm. Finally, analytical integration is performed by applying the theorem of residues. As a result of the proposed method, the flux linkage between the loops is expressed as a finite sum of products of Bessel functions. Since no assumptions are made in the mathematical derivation, the obtained explicit expression is valid regardless of the operating frequency. Numerical tests are performed to show the advantages of the proposed method with respect to standard numerical integration techniques. In particular, it is seen how the use of the derived series representation for the inductance with 50 terms permits to achieve the same accuracy as conventional Gauss-Kronrod numerical integration technique, with the advantage of reducing the computation time by at least 8 times.
Citation
Mauro Parise, "Evaluation of the Flux Linkage Between Equally Sized Circular Loops Placed on a Layered Soil," Progress In Electromagnetics Research Letters, Vol. 89, 127-132, 2020.
doi:10.2528/PIERL19112604
References

1. Boerner, D. E., "Controlled source electromagnetic deep sounding: Theory, results and correlation with natural source results," Surveys in Geophysics, Vol. 13, No. 4–5, 435-488, 1992.
doi:10.1007/BF01903486

2. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010.
doi:10.2528/PIERB10060707

3. Kong, F. N., S. E. Johnstad, and J. Park, "Wavenumber of the guided wave supported by a thin resistive layer in marine controlled-source electromagnetics," Geophysical Prospecting, Vol. 29, No. 10, 1301-1307, 2003.

4. Shastri, N. L. and H. P. Patra, "Multifrequency sounding results of laboratory simulated homogeneous and two-Layer earth models," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 749-752, 1988.
doi:10.1109/36.7706

5. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, "Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity," Geophysics, Vol. 68, No. 6, 1857-1869, 2003.
doi:10.1190/1.1635038

6. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory — Volume 1, 131-308, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

7. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, Amsterdam, 2009.

8. Parise, M., V. Tamburrelli, and G. Antonini, "Mutual impedance of thin-wire circular loops in near-surface applications," IEEE Trans. on Electromagnetic Compatibility, Vol. 61, No. 2, 558-563, 2019.
doi:10.1109/TEMC.2018.2816030

9. Beard, L. P. and J. E. Nyquist, "Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability," Geophysics, Vol. 63, No. 5, 1556-1564, 1998.
doi:10.1190/1.1444452

10. Parise, M., "Quasi-static vertical magnetic field of a large horizontal circular loop located at the earth’s surface," Progress In Electromagnetics Research Letters, Vol. 62, 29-34, 2016.
doi:10.2528/PIERL16053003

11. Wait, J. R., "Mutual electromagnetic coupling of loops over a homogeneous ground," Geophysics, Vol. 20, No. 3, 630-637, 1955.
doi:10.1190/1.1438167

12. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave x-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008.
doi:10.2528/PIER07100201

13. Telford, W. M., L. P. Geldart, and R. E. Sheriff, Applied Geophysics, Cambridge University Press, Cambridge, UK, 1990.
doi:10.1017/CBO9781139167932

14. Parise, M., "An exact series representation for the EM field from a circular loop antenna on a lossy half-space," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 23-26, 2014.
doi:10.1109/LAWP.2013.2296149

15. Parise, M., "Full-wave analytical explicit expressions for the surface fields of an electrically large horizontal circular loop antenna placed on a layered ground," IET Microwaves, Antennas & Propagation, Vol. 11, 929-934, 2017.
doi:10.1049/iet-map.2016.0590

16. Palacky, G. J., "Resistivity characteristics of geologic targets," Electromagnetic Methods in Applied Geophysics, Vol. 1, 52-129, Nabighian, M. N., Ed., SEG, Tulsa, Oklahoma, 1988.

17. Parise, M., "On the surface fields of a small circular loop antenna placed on plane stratified earth," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015.
doi:10.1155/2015/187806

18. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, 181-200, 2005.
doi:10.1007/s00024-004-2586-2

19. Parise, M., "Efficient computation of the surface fields of a horizontal magnetic dipole located at the air-ground interface," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 29, 653-664, 2016.
doi:10.1002/jnm.2120

20. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. on Electromagnetic Compatibility, Vol. 60, No. 6, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265

21. Singh, N. P. and T. Mogi, "Effective skin depth of EM fields due to large circular loop and electric dipole sources," Earth Planets Space, Vol. 55, 301-313, 2003.
doi:10.1186/BF03351764

22. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11–12, 1667-1677, 2011.
doi:10.1163/156939311797164945

23. Ryu, J., H. F. Morrison, and S. H. Ward, "Electromagnetic fields about a loop source of current," Geophysics, Vol. 35, No. 5, 862-896, 1970.
doi:10.1190/1.1440134

24. Parise, M., "Fast computation of the forward solution in controlled-source electromagnetic sounding problems," Progress In Electromagnetics Research, Vol. 111, 119-139, 2011.
doi:10.2528/PIER10101409

25. Constable, S. C., R. L. Parker, and C. G. Constable, "Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data," Geophysics, Vol. 52, No. 3, 289-300, 1987.
doi:10.1190/1.1442303

26. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Transactions on Power Delivery, Vol. 14, 1052-1061, 1999.
doi:10.1109/61.772353

27. Parise, M., "A highly accurate analytical solution for the surface fields of a short vertical wire antenna lying on a multilayer ground," Waves in Random and Complex Media, Vol. 28, 49-59, 2018.
doi:10.1080/17455030.2017.1319990

28. Parise, M., "Improved Babylonian square root algorithm-based analytical expressions for the surface-to-surface solution to the Sommerfeld half-space problem," IEEE Transactions on Antennas and Propagation, Vol. 63, 5832-5837, 2015.
doi:10.1109/TAP.2015.2478958