Vol. 91
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-24
Ferromagnetic Resonance Spectroscopy of CoFeZr -CaF 2 Granular Nanocomposites
By
Progress In Electromagnetics Research M, Vol. 91, 11-18, 2020
Abstract
Results of the study of magnetic properties of nanocomposite samples (CoFeZr)x(CaF2)(100 - x) (31 at.% ≤ x ≤ 47 at.%) produced in argon (Ar) and argon with oxygen (Ar with O2) sputtering atmosphere are presented in this paper. The magnetic resonance spectroscopy at room temperature using continuous wave X-band electron spin resonance (ESR) was used for analysis of samples magnetic properties. After analysis it is established that in the case of samples produced in argon sputtering atmosphere the value of g increases with the rise of metal content and for samples produced in argon with oxygen atmosphere the value g decrease with the rise of x. Such a behavior of g(x) is explained by the presence of core-shell structure of NPs represented by ferromagnetic core and antiferromagnetic core that results in quenching of orbital motion of electrons.
Citation
Tomasz N. Kołtunowicz, Vitalii Bondariev, Pawel Zukowski, Julia Sidorenko, Vadim Bayev, and Julia A. Fedotova, "Ferromagnetic Resonance Spectroscopy of CoFeZr -CaF 2 Granular Nanocomposites," Progress In Electromagnetics Research M, Vol. 91, 11-18, 2020.
doi:10.2528/PIERM19112107
References

1. Pogrebnjak, A. D. and V. M. Beresnev, Nanocoatings Nanosystems Nanotechnologies, Bentham Science Publishers Ltd., 2012.
doi:10.2174/97816080541691120101

2. Pogrebnjak, A. D., V. M. Beresnev, K. V. Smyrnova, Y. O. Kravchenko, P. V. Zukowski, and G. G. Bondarenko, "The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings," Materials Letters, Vol. 211, 316-318, 2018.
doi:10.1016/j.matlet.2017.09.121

3. Pogrebnjak, A., V. Ivashchenko, O. Bondar, V. Beresnev, O. Sobol, K. Zal¸eski, S. Jurga, E. Coy, P. Konarski, and B. Postolnyi, "Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations," Materials Characterization, Vol. 134, 55-63, 2017.
doi:10.1016/j.matchar.2017.10.016

4. Bayev, V., E. Streltsov, M. Milosavljevic, M. Malashchonak, A.Maximenko, T. N. Koltunowicz, P. Zukowski, and K. Kierczynski, "Magnetic anisotropy in bicomponent self-assembled Ni and Ni-Pd nanowires studied by magnetic resonance spectroscopy," IEEE Transactions on Magnetics, Vol. 51, No. 10, 2300307, 2015.
doi:10.1109/TMAG.2015.2445733

5. Gubin, S. P., Y. A. Koksharov, G. B. Khomutov, and G. Y. Yurkov, "Magnetic nanoparticles: Preparation, structure and properties," Russian Chemical Reviews, Vol. 74, No. 6, 489-520, 2005.
doi:10.1070/RC2005v074n06ABEH000897

6. Respaud, M., J. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. Ould Ely, C. Amiens, and B. Chaudret, "Surface effects on the magnetic properties of ultrafine cobalt particles," Physical Review B — Condensed Matter and Materials Physics, Vol. 57, No. 5, 2925-2935, 1998.
doi:10.1103/PhysRevB.57.2925

7. Partyka, J., P. Zukowski, P. Wegierek, M. Kowalski, Y. Sidorenko, V. Stelmakh, N. Lapchuk, and E. Shumskaya, "Magnetic properties of semiconducting compounds: Cd1−xFexTe and Cd1−xMnxTe," Optoelectronic and Electronic Sensors V, Editor, Proceedings of SPIE, Vol. 5124, 120-124, 2003.
doi:10.1117/12.517067

8. Kumar, D., J. Narayan, A. V. Kvit, A. K. Sharma, and J. Sankar, "High coercivity and superparamagnetic behavior of nanocrystalline iron particles in alumina matrix," Journal of Magnetism and Magnetic Materials, Vol. 232, No. 3, 161-167, 2001.
doi:10.1016/S0304-8853(01)00191-3

9. Wang, C., Y. Rong, and T. Y. H. (Xu Zuyao), "Key role in giant magnetoresistance of granular films: Single-domain ferromagnetic granules," Journal of Magnetism and Magnetic Materials, Vol. 305, No. 2, 310-314, 2006.
doi:10.1016/j.jmmm.2006.01.016

10. Dempsey, N. M., L. Ranno, D. Givord, J. Gonzalo, R. Serna, G. T.Fei, A. K. Petford-Long, R. C. Doole, and D. E. Hole, "Magnetic behavior of Fe:Al2O3 nanocomposite films produced by pulsed laser deposition," Journal of Applied Physics, Vol. 90, No. 12, 6268-6274, 2001.
doi:10.1063/1.1415054

11. Zhu, T. and Y. J. Wang, "Enhanced tunneling magnetoresistance of (formula presented) granular films in the coulomb blockade regime," Physical Review B — Condensed Matter and Materials Physics, Vol. 60, No. 17, 11918-11921, 1999.
doi:10.1103/PhysRevB.60.11918

12. Mitani, S., S. Takahashi, K. Takanashi, K. Yakushiji, S.Maekawa, and H. Fujimori, "Enhanced magnetoresistance in insulating granular systems: Evidence for higher-order tunneling," Physical Review Letters, Vol. 81, No. 13, 2799-2802, 1998.
doi:10.1103/PhysRevLett.81.2799

13. Judy, J. H., "Advancements in PMR thin-film media," Journal of Magnetism and Magnetic Materials, Vol. 287, 16-26, 2005.
doi:10.1016/j.jmmm.2004.10.004

14. Timopheev, A. A., S.M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, O. V. Stognei, and A. V. Sitnikov, "Growth-induced perpendicular anisotropy of grains in Co-Al-O nanogranular ferromagnetic films," Physics of the Solid State, Vol. 53, No. 3, 494-503, 2011.
doi:10.1134/S1063783411030309

15. Ivanov, V. E., "Mixed magnetooptical contrast induced by an inhomogeneous magnetic field in metal films with planar anisotropy," Technical Physics Letters, Vol. 35, No. 5, 435-439, 2009.
doi:10.1134/S1063785009050150

16. Ivanov, V. E., "Visualization of nonuniform magnetic fields by gadolinium-cobalt amorphous films," Physics of Metals and Metallography, Vol. 105, No. 5, 453-459, 2008.
doi:10.1134/S0031918X08050050

17. Kalinin, Y. E., A. T. Ponomarenko, A. V. Sitnikov, and O. V. Stognej, "Granular metal-insulator nanocomposites with amorphous structure," Fizika i Khimiya Obrabotki Materialov, No. 5, 14-20, 2001.

18. Zolotukhin, I. V., Y. U. E. Kalinin, A. T. Ponomarenko, V. G. Shevchenko, A. V. Sitnikov, O. V. Stognei, and O. Figovsky, "Metal-dielectric nanocomposites with amorphous structure," Journal of Nanostructured Polymers and Nanocomposites, Vol. 2, No. 1, 23-24, 2006.

19. Himpsel, F. J., J. E. Ortega, G. J. Mankey, and R. F. Willis, "Magnetic nanostructures," Advances in Physics, Vol. 47, No. 4, 511-597, 1998.
doi:10.1080/000187398243519

20. Kasiuk, J. V., J. A. Fedotova, J. Przewoznik, J. Zukrowski, M. Sikora, C. Kapusta, A. Grce, and M. Milosavljevic, "Growth-induced non-planar magnetic anisotropy in FeCoZr-CaF2 nanogranular films: Structural and magnetic characterization," Journal of Applied Physics, Vol. 116, No. 4, 044301, 2014.
doi:10.1063/1.4891016

21. Kasiuk, J. V., J. A. Fedotova, J. Przewoznik, C. Kapusta, M. Sikora, J. Zukrowski, A. Grce, and M. Milosavljevic, "Oxidation controlled phase composition of FeCo(Zr) nanoparticles in CaF2 matrix," Materials Characterization, Vol. 113, 71, 2016.
doi:10.1016/j.matchar.2016.01.010

22. Weil, J. A. and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 592, Wiley, 1994.

23. Koltunowicz, T. N., P. Zukowski, J. Sidorenko, V. Bayev, J. A. Fedotova, M. Opielak, and A. Marczuk, "Ferromagnetic resonance spectroscopy of CoFeZr-Al2O3 granular films containing ‘FeCo core — oxide shell’ nanoparticles," Journal of Magnetism and Magnetic Materials, Vol. 421, 98-102, 2017.
doi:10.1016/j.jmmm.2016.08.016

24. Saad, A. M., A. K. Fedotov, J. A. Fedotova, I. A. Svito, B. V. Andrievsky, Y. E. Kalinin, V. V. Fedotova, V. Malyutina-Bronskaya, A. A. Patryn, A. V. Mazanik, and A. V. Sitnikov, "Characterization of (Co0.45Fe0.45Zr0.10)x(Al2O3)1−x nanocomposite films applicable as spintronic materials," Physica Status Solidi C – Current Topics in Solid State Physics, Vol. 3, No. 5, 1283, 2006.

25. Fedotova, J. A., J. Przewoznik, C. Kapusta, M. Milosavljevic, J. V. Kasiuk, J. Zukrowski, M. Sikora, A. A. Maximenko, D. Szepietowska, and K. P. Homewood, "Magnetoresistance in FeCoZr-Al2O3 nanocomposite films containing metal coreoxide shell nanogranules," Journal of Physics D: Applied Physics, Vol. 44, No. 49, 495001, 2011.
doi:10.1088/0022-3727/44/49/495001

26. Fedotova, J. A., "Tailored magnetic and electric states in 3d-metal-insulator films: Characterization and applications," Acta Physica Polonica A, Vol. 125, No. 4, 944-952, 2014.
doi:10.12693/APhysPolA.125.944

27. Fedotova, J., J. Kasiuk, J. Przewoznik, C. Kapusta, I. Svito, Y. Kalinin, and A. Sitnikov, "Effect of oxide shells on the magnetic and magnetotransport characteristics of oxidized FeCoZr nanogranules in Al2O3," Journal of Alloys and Compounds, Vol. 509, No. 41, 9869-9875, 2011.
doi:10.1016/j.jallcom.2011.07.066

28. Cullity, B. D. and C. D. Graham, "Introduction to Magnetic Materials," John Wiley & Sons, Inc., 544, 2008.

29. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media (Second Edition Revised and Enlarged), Pergamon, 1984.

30. Nibarger, J. P., R. Lopusnik, Z. Celinski, and T. J. Silva, "Variation of magnetization and the Lande g factor with thickness in Ni-Fe films," Applied Physics Letters, Vol. 83, No. 1, 93-95, 2003.
doi:10.1063/1.1588734

31. Vyzulin, S. A., E. V. Lebedeva, A. V. Maksimochkina, N. S. Perov, N. E. Syr’ev, and I. T. Trofimenko, "Peculiarities of the ferromagnetic resonance in multilayer CoFeZr-α-Si films," Bulletin of the Russian Academy of Sciences: Physics, Vol. 71, No. 5, 673-676, 2007.
doi:10.3103/S106287380705022X