Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-26
A Compact Wideband 24 GHz End-Fire Helix Antenna with High Gain Turn Ratio in Planar Technology
By
Progress In Electromagnetics Research Letters, Vol. 89, 121-125, 2020
Abstract
A wideband end fire antenna architecture in planar technology with fewer turns: helix antenna in planar technology adopting thickness of quarter wavelength is suggested. A wideband 24 GHz helix antenna with 2.25 turns in Rogers compressed RT 4350 technology is presented. The antenna has a bandwidth of 6.2 GHz for S11, gain of 9.3 dBi, half power width of 39.5° and 39° respectively in X-Z and X-Y planes. This helix antenna is characterized by wide bandwidth, high gain, high half power width, compactness and high gain turn ratio. It could also be utilized in antenna design for other frequency bands with compressed PCB technology, as well for on-chip THz antenna design.
Citation
Yanfei Mao, and Shiju E, "A Compact Wideband 24 GHz End-Fire Helix Antenna with High Gain Turn Ratio in Planar Technology," Progress In Electromagnetics Research Letters, Vol. 89, 121-125, 2020.
doi:10.2528/PIERL19111105
References

1. Zhong, S., Antenna Theory and Techniques, 2nd edition, Publishing House of Electronic Industry, Beijing, 2015.

2. Kommalapati, A. C., C. Zhao, and S. Aditya, "A printed planar helix antenna," 9th European Conference on Antennas and Propagation (EuCAP), 2015.

3. Syrytsin, I., S. Zhang, and G. F. Pedersen, "Circularly polarized planar helix phased antenna array for 5G mobile terminals," International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, 2017.

4. Huang, J., Z. Xue, W. Ren, and W. Li, "The low-profile end-fire antenna with circular polarization at S band," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017.

5. Chen, Z. and Z. Shen, "Planar helical antenna of circular polarization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4315-4323, 2015.
doi:10.1109/TAP.2015.2463746

6. Zainud-Deen, S. H., H. A. El-Azem Malhat, N. A. A. S. El-Shalaby, and S. M. Gaber, "Circular polarization bandwidth reconfigurable high gain planar plasma helical antenna," IEEE Transactions on Plasma Science, Vol. 47, No. 9, 4274-4280, 2019.
doi:10.1109/TPS.2019.2931989

7. Naqvi, A. H., J.-H. Park, C.-W. Baek, and S. Lim, "V-band end-fire radiating planar micromachined helical antenna using through-glass silicon via (TGSV) technology," IEEE Access, No. 7, 87907-87915, 2019.
doi:10.1109/ACCESS.2019.2925073

8. Chen, Q., W. Wu, Y. Di, and Z. Hu, "A planar compact helical log-periodic array," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 2018.

9. Kraus, J. D. and R. J. Marhefka, Antennas: For All Applications, 3rd edition, Publishing House of Electronic Industry, Beijing, 2008.