Vol. 89
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-17
A Real-Time Automatic Method for Target Locating Under Unknown Wall Characteristics in through -Wall Imaging
By
Progress In Electromagnetics Research M, Vol. 89, 189-197, 2020
Abstract
To solve the real-time through-wall detection problem in the presence of wall ambiguities, an approach based on the kernel extreme learning machine (KELM) is proposed in this paper. The wall ambiguity and propagation effect are included in the single-hidden-layer feedforward networks, and then the technique converts the through-wall problem into a regression problem. The relationship between the scattered data and the target properties is determined after the KELM training process. Numerical results demonstrate the good performance in terms of the effectiveness, generalization, and robustness. Compared with the support vector machine (SVM) and least-squares support vector machine (LS-SVM), the KELM provides almost the same estimated accuracy but at a much faster learning speed, which greatly contributes to solving the real-time detection problem. In addition, the situations of two targets, different target radiuses, and noisy circumstances are discussed.
Citation
Hua-Mei Zhang, Sheng Zhou, Cheng Xu, and Ye-Rong Zhang, "A Real-Time Automatic Method for Target Locating Under Unknown Wall Characteristics in through -Wall Imaging," Progress In Electromagnetics Research M, Vol. 89, 189-197, 2020.
doi:10.2528/PIERM19111101
References

1. Protiva, P., J. Mrkvica, and J. Machac, "Estimation of wall parameters from time-delay-only through-wall radar measurements," IEEE Trans. Antennas Propagat., Vol. 59, No. 11, 4268-4278, 2011.
doi:10.1109/TAP.2011.2164206

2. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. Geosci. Remot. Sens., Vol. 46, No. 6, 1589-1599, 2008.
doi:10.1109/TGRS.2008.916212

3. Solimene, R., F. Soldovieri, G. Prisco, and R. Pierri, "Three-dimensional through-wall imaging under ambiguous wall parameters," IEEE Trans. Geosci. Remot. Sens., Vol. 47, No. 5, 1310-1317, 2009.
doi:10.1109/TGRS.2009.2012698

4. Jin, T., B. Chen, and Z. Zhou, "Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery," IEEE Trans. Geosci. Remot. Sens., Vol. 51, No. 3, 1836-1843, 2013.
doi:10.1109/TGRS.2012.2206395

5. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geosc. Rem. Sens. Lett., Vol. 4, No. 4, 513-517, 2007.
doi:10.1109/LGRS.2007.900735

6. Li, L. L., W. J. Zhang, and F. Li, "A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics," IEEE Trans. Geosci. Remot. Sens., Vol. 48, No. 1, 423-431, 2010.
doi:10.1109/TGRS.2009.2024686

7. Wang, G. Y., M. G. Amin, and Y. M. Zhang, "New approach for target locations in the presence of wall ambiguities," IEEE Trans. Aero. Elec. Sys., Vol. 42, No. 1, 301-315, 2006.
doi:10.1109/TAES.2006.1603424

8. Ahmad, F., M. G. Amin, and G. Mandapati, "Autofocusing of through-the-wall radar imagery under unknown wall characteristics," IEEE Trans. on Image Proc., Vol. 16, No. 7, 1785-1795, 2007.
doi:10.1109/TIP.2007.899030

9. Zhang, H. M., Z. B. Wang, Z. H. Wu, F. F. Wang, and Y. R. Zhang, "Real-time through-wall radar image under unknown wall characteristics using LS-SVM-based method," J. Appl. Remote Sens., Vol. 10, No. 2, 020501-1-8, 2016.

10. Huang, G. B., "An insight into extreme learning machines: Random neurons, random features and kernels," Cognitive Computation, Vol. 6, No. 3, 376-390, 2014.
doi:10.1007/s12559-014-9255-2

11. Huang, G. B., Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," IEEE International Joint Conference on Neural Networks, 985-990, 2004.

12. Huang, G. B., X. J. Ding, and H. M. Zhou, "Optimization method based extreme learning machine for classification," Neurocomputing, Vol. 74, No. 1, 155-163, 2010.
doi:10.1016/j.neucom.2010.02.019

13. Huang, G. B., H. M. Zhou, X. J. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classi¯cation," IEEE Trans. on Sys., Man, and Cybernetics, Part B: Cybernetics, Vol. 42, No. 2, 513-529, 2012.
doi:10.1109/TSMCB.2011.2168604

14. Huang, G. B., Y. Lan, and D. H. Wang, "Extreme learning machines: A survey," Int. J. Mach. Learn. Cyb., Vol. 2, No. 2, 107-122, 2011.
doi:10.1007/s13042-011-0019-y

15. Frenay, B. and M. Verleysen, "Parameter-insensitive kernel in extreme learning for non-linear support vector regression," Neurocomputing, Vol. 74, No. 16, 2526-2531, 2011.
doi:10.1016/j.neucom.2010.11.037