1. Meng, H. and W. Dou, Analysis and Design of Radome in Millimeter Wave Band, Microwave and Millimeter Wave Technologies, Igor Minin, IntechOpen, 2010, doi: 10.5772/9054, available from: https://www.intechopen.com/books/microwave-and-millimeter-wave-technologies-from-photonicbandgap-devices-to-antenna-and-applications/analysis-and-design-of-radome-in-millimeter-waveband.
2. Gorgucci, E., R. Bechini, L. Baldini, R. Cremonini, and V. Chandrasekar, "The influence of antenna radome on weather radar calibration and its real-time assessment," Journal of Atmospheric and Oceanic Technology, Vol. 30, No. 4, 676-689, 2013.
doi:10.1175/JTECH-D-12-00071.1
3. Asadchy, V. S., I. A. Faniayeu, Y. Ra'di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, "Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption," Phys. Rev. X, Vol. 5, No. 3, 031005, 2015, doi: 10.1103/PhysRevX.5.031005.
4. Werner, D. H., Broadband Metamaterials in Electromagnetics: Technology and Applications, Chapter 1, Pan Stanford, 2017.
doi:10.1201/9781315364438
5. Culhaoglu, E. A., V. A. Osipov, and P. Russer, "Imaging by a double negative metamaterial slab excited with an arbitrarily oriented dipole," Radio Science, Vol. 49, 68-79, 2014.
doi:10.1002/2013RS005242
6. She, A., S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, "Large area metalenses: Design, characterization, and mass manufacturing," Opt. Express, Vol. 26, 1573-1585, 2018.
doi:10.1364/OE.26.001573
7. Khorasaninejad, M., T. W. Chen, C. R. Devlin, J. Oh, Y. A. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
doi:10.1126/science.aaf6644
8. Zhang, K., Y. Yuan, and Q. Wu, "Metalens in microwave region for the generation of orbital angular momentum," IEEE International Symposium on Electromagnetic Compatibility and Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 129, 2018.
doi:10.1109/ISEMC.2018.8394090
9. Wang, L., W. Hong, L. Deng, S. Li, S. Uddin, H. Tian, and D. Chen, "Flexible broadband achromatic microwave metalens design using polynomial fitting method," Proceedings of Asia Microwave Conference (APMC), 1384-1386, 2018.
10. Azad, K. A., V. A. Efimov, S. Ghosh, J. Singleton, J. A. Taylor, and H. Chen, "Ultra-thin metasurface microwave flat lens for broadband applications," Applied Physics Letters, Vol. 110, No. 22, 1-5, 2017.
doi:10.1063/1.4984219
11. Zhang, Y., X. Zhang, et al. "Moving train imaging by ground-based Ka-band radar," Loughborough Antenna and Propagation Conference (LAPC), 413-416, Loughborough, UK, Nov. 16-18, 2009.
12. Zhang, X., W. Zhai, and Y. Zhang, "A prototype for stepped-frequency SAR dechirp imaging system and experimental verification," 2009 Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 7-10, 2009.
13. Zhang, X. and Y. Zhang, "High-resolution imaging of a moving train by ground-based radar with compressive sensing," Electronic Letters, Vol. 46, No. 7, 529-531, Apr. 2010.
doi:10.1049/el.2010.2850
14. Winston, R., J. Minano, and P. Benitez, Nonimaging Optics, Academic Press, 2004.
15. Pourahmadazar, J. and T. Denidni, "Towards milimeter-wavelength: Transmission-mode fresnel-zone plate lens antennas using plastic material porosity control in homogeneous medium," Scientific Reports, Vol. 8, No. 5300, 1-14, 2018.
16. Öziş, E., A. V. Osipov, and T. F. Eibert, "A semi-analytical approach for fast design of microwave metasheets with circular metal rings on dielectric substrates," Progress In Electromagnetics Research C, Vol. 88, 13-25, 2018.
17. Glassner, S. A., An Introduction to Ray Tracing, Academic Press, 1989.
18. Balanis, A. C., Advanced Engineering Electromagnetics, Wiley, 2012.
19. Durgun, C. A. and M. Kuzuoğlu, "Computation of physical optics integral by Levin's integration algorithm," Progress In Electromagnetics Research M, Vol. 6, 59-74, 2009.
doi:10.2528/PIERM09020204
20. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 6, 767-769, 1968.
doi:10.1109/TAP.1968.1139296
21. Dos Santos, M. L. X. and R. N. Rabelo, "On the Ludwig integration algorithm for triangular subregions," Proceedings of the IEEE, Vol. 74, No. 10, 1455-1456, 1986.
doi:10.1109/PROC.1986.13646
22. Youssef, N. N., "Radar cross section of complex targets," Proc. IEEE, Vol. 77, 722-734, 1989.
doi:10.1109/5.32062
23. Öziş, E., V. A. Osipov, and F. T. Eibert, "Physical optics and full-wave simulations of transmission of electromagnetic fields through electrically large planar metasheets," Advances in Radio Science, Vol. 15, 29-35, 2017.
doi:10.5194/ars-15-29-2017
24. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, Wiley, 2017.
doi:10.1002/9781119004639
25. Crabtree, D. G., "A numerical quadrature technique for physical optics scattering analysis," IEEE Transactions on Magnetics, Vol. 27, No. 5, 4291-4294, 1991.
doi:10.1109/20.105050
26. Carluccio, G. and M. Albani, "Efficient adaptive numerical integration algorithms for the evaluation of surface radiation integrals in the high-frequency regime," Radio Science, Vol. 46, No. 5, 1-8, 2011.
doi:10.1029/2010RS004623