Vol. 90
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-03
Design of a Metalens for Correcting the Phase Distortions of a Hemispheric Dielectric Radome in the Ka Band
By
Progress In Electromagnetics Research M, Vol. 90, 47-58, 2020
Abstract
Metasheets are ultra-thin sheets built from sub-wavelength resonators designed to achieve certain frequency-dependent transmission behavior. A semianalytical approach based on an equivalent circuit representation is proposed to calculate the microwave transmission through metasheets consisting of two-dimensional periodic arrays of planar circular metal rings on a dielectric substrate. In the semianalytical approach, the impedances of the equivalent circuit are parameterized and fitted to match the values of transmission coefficients obtained by full-wave simulations at selected frequency points. As dimensional parameters, the outer radius and the width of the ring are considered. A metalens with four concentric zones is designed by using this semianalytical approach to correct the phase distortions due to a polypropylene hemispheric radome at frequencies around 28 GHz in the Ka band. It is shown that the designed metalens works well for 27 GHz, 28 GHz, 29 GHz and 29.5 GHz, implying the bandwidth of approximately 2.5 GHz. The field transmitted through the metalens and the radome is calculated by Physical Optics (PO). The electrically large integration area is divided into small square facets to calculate the PO integral. The calculated and measured results are shown to agree well.
Citation
Ezgi Öziş, Andrey Osipov, and Thomas F. Eibert, "Design of a Metalens for Correcting the Phase Distortions of a Hemispheric Dielectric Radome in the Ka Band," Progress In Electromagnetics Research M, Vol. 90, 47-58, 2020.
doi:10.2528/PIERM19110503
References

1. Meng, H. and W. Dou, Analysis and Design of Radome in Millimeter Wave Band, Microwave and Millimeter Wave Technologies, Igor Minin, IntechOpen, 2010, doi: 10.5772/9054, available from: https://www.intechopen.com/books/microwave-and-millimeter-wave-technologies-from-photonicbandgap-devices-to-antenna-and-applications/analysis-and-design-of-radome-in-millimeter-waveband.

2. Gorgucci, E., R. Bechini, L. Baldini, R. Cremonini, and V. Chandrasekar, "The influence of antenna radome on weather radar calibration and its real-time assessment," Journal of Atmospheric and Oceanic Technology, Vol. 30, No. 4, 676-689, 2013.
doi:10.1175/JTECH-D-12-00071.1

3. Asadchy, V. S., I. A. Faniayeu, Y. Ra'di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, "Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption," Phys. Rev. X, Vol. 5, No. 3, 031005, 2015, doi: 10.1103/PhysRevX.5.031005.

4. Werner, D. H., Broadband Metamaterials in Electromagnetics: Technology and Applications, Chapter 1, Pan Stanford, 2017.
doi:10.1201/9781315364438

5. Culhaoglu, E. A., V. A. Osipov, and P. Russer, "Imaging by a double negative metamaterial slab excited with an arbitrarily oriented dipole," Radio Science, Vol. 49, 68-79, 2014.
doi:10.1002/2013RS005242

6. She, A., S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, "Large area metalenses: Design, characterization, and mass manufacturing," Opt. Express, Vol. 26, 1573-1585, 2018.
doi:10.1364/OE.26.001573

7. Khorasaninejad, M., T. W. Chen, C. R. Devlin, J. Oh, Y. A. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
doi:10.1126/science.aaf6644

8. Zhang, K., Y. Yuan, and Q. Wu, "Metalens in microwave region for the generation of orbital angular momentum," IEEE International Symposium on Electromagnetic Compatibility and Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), 129, 2018.
doi:10.1109/ISEMC.2018.8394090

9. Wang, L., W. Hong, L. Deng, S. Li, S. Uddin, H. Tian, and D. Chen, "Flexible broadband achromatic microwave metalens design using polynomial fitting method," Proceedings of Asia Microwave Conference (APMC), 1384-1386, 2018.

10. Azad, K. A., V. A. Efimov, S. Ghosh, J. Singleton, J. A. Taylor, and H. Chen, "Ultra-thin metasurface microwave flat lens for broadband applications," Applied Physics Letters, Vol. 110, No. 22, 1-5, 2017.
doi:10.1063/1.4984219

11. Zhang, Y., X. Zhang, et al. "Moving train imaging by ground-based Ka-band radar," Loughborough Antenna and Propagation Conference (LAPC), 413-416, Loughborough, UK, Nov. 16-18, 2009.

12. Zhang, X., W. Zhai, and Y. Zhang, "A prototype for stepped-frequency SAR dechirp imaging system and experimental verification," 2009 Asia-Pacific Microwave Conference (APMC), Singapore, Dec. 7-10, 2009.

13. Zhang, X. and Y. Zhang, "High-resolution imaging of a moving train by ground-based radar with compressive sensing," Electronic Letters, Vol. 46, No. 7, 529-531, Apr. 2010.
doi:10.1049/el.2010.2850

14. Winston, R., J. Minano, and P. Benitez, Nonimaging Optics, Academic Press, 2004.

15. Pourahmadazar, J. and T. Denidni, "Towards milimeter-wavelength: Transmission-mode fresnel-zone plate lens antennas using plastic material porosity control in homogeneous medium," Scientific Reports, Vol. 8, No. 5300, 1-14, 2018.

16. Öziş, E., A. V. Osipov, and T. F. Eibert, "A semi-analytical approach for fast design of microwave metasheets with circular metal rings on dielectric substrates," Progress In Electromagnetics Research C, Vol. 88, 13-25, 2018.

17. Glassner, S. A., An Introduction to Ray Tracing, Academic Press, 1989.

18. Balanis, A. C., Advanced Engineering Electromagnetics, Wiley, 2012.

19. Durgun, C. A. and M. Kuzuoğlu, "Computation of physical optics integral by Levin's integration algorithm," Progress In Electromagnetics Research M, Vol. 6, 59-74, 2009.
doi:10.2528/PIERM09020204

20. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 6, 767-769, 1968.
doi:10.1109/TAP.1968.1139296

21. Dos Santos, M. L. X. and R. N. Rabelo, "On the Ludwig integration algorithm for triangular subregions," Proceedings of the IEEE, Vol. 74, No. 10, 1455-1456, 1986.
doi:10.1109/PROC.1986.13646

22. Youssef, N. N., "Radar cross section of complex targets," Proc. IEEE, Vol. 77, 722-734, 1989.
doi:10.1109/5.32062

23. Öziş, E., V. A. Osipov, and F. T. Eibert, "Physical optics and full-wave simulations of transmission of electromagnetic fields through electrically large planar metasheets," Advances in Radio Science, Vol. 15, 29-35, 2017.
doi:10.5194/ars-15-29-2017

24. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, Wiley, 2017.
doi:10.1002/9781119004639

25. Crabtree, D. G., "A numerical quadrature technique for physical optics scattering analysis," IEEE Transactions on Magnetics, Vol. 27, No. 5, 4291-4294, 1991.
doi:10.1109/20.105050

26. Carluccio, G. and M. Albani, "Efficient adaptive numerical integration algorithms for the evaluation of surface radiation integrals in the high-frequency regime," Radio Science, Vol. 46, No. 5, 1-8, 2011.
doi:10.1029/2010RS004623