Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-02-03
Design of a Compact 5.7-5.9 GHz Filter Based on CRLH Resonator Units
By
Progress In Electromagnetics Research Letters, Vol. 89, 141-149, 2020
Abstract
A compact substrate integrated waveguide (SIW) filter based on composite right/left-handed (CRLH) resonator units is implemented in this paper. The filter is composed of two CRLH resonator units serially connected by a SIW transmission line unit. The structure of the filter and equivalent circuit transmission behavior are analyzed, and a novel design method by optimizing the length and width of the interdigital metal slots to decrease the filter operation frequency is proposed. To further demonstrate the design theory and performance of the proposed filter, the filter was designed and fabricated on an RT6010 dielectric material. The measurement results show that the proposed filter works at a center frequency of 5.8 GHz with 200 MHz bandwidth. The insertion loss is 2.3 dB, and the filter size is only 10 mm × 7.4 mm.
Citation
Shanwen Hu, Yiting Gao, Xinlei Zhang, and Bo Zhou, "Design of a Compact 5.7-5.9 GHz Filter Based on CRLH Resonator Units," Progress In Electromagnetics Research Letters, Vol. 89, 141-149, 2020.
doi:10.2528/PIERL19110502
References

1. Zhu, T., H. Deng, J. Ding, et al. "Compact inline dual-band dual-mode BPF with a hybrid structure of single-layered SIW and CPW," IEICE Electronics Express, Vol. 13, 20160209, 2016.
doi:10.1587/elex.13.20160209

2. Jia, D., Q. Feng, Q. Xiang, et al. "Multilayer substrate integrated waveguide (SIW) filters with higher-order mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 9, 678-680, 2016.
doi:10.1109/LMWC.2016.2597222

3. Li, P., H. Chu, D. Zhao, et al. "Compact dual-band balanced SIW bandpass filter with improved common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 4, 347-349, 2017.
doi:10.1109/LMWC.2017.2678428

4. Lovato, R. and X. Gong, "A third-order SIW integrated filter/antenna using two resonant cavities," IEEE Antennas and Wireless Propagation Letters, 1-1, 2018.

5. Zhang, H., W. Kang, and W. Wu, "Miniaturized dual-band SIW filters using E-shaped slotlines with controllable center frequencies," IEEE Microwave and Wireless Components Letters, 1-3, 2018.

6. Wei, F., X. Y. Wang, Y. K. Hong, et al. "Wideband bandpass filter using U-slotted SW-HMSIW cavities," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, 1-7, 2018.
doi:10.1002/mmce.21178

7. Saghati, A. P., A. P. Saghati, and K. Entesari, "Ultra-miniature SIW cavity resonators and filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4329-4340, 2015.
doi:10.1109/TMTT.2015.2494023

8. Sun, L., B. Sun, J. P. Yuan, et al. "Low profile, quasi-omnidirectional, substrate integrated waveguide (SIW) multi-horn antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1-1, 2015.

9. Martinezros, A. J., J. L. Gomeztonero, and G. Goussetis, "Multifunctional angular bandpass filter SIW leaky-wave antenna," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, 1-1, 2017.

10. Yu, T., H. Zhao, Z. Li, et al. "Design of planar matching loads for traveling-wave-fed SIW slot arrays," IEICE Electronics Express, Vol. 14, No. 15, 20170467, 2017.
doi:10.1587/elex.14.20170467

11. Jin, H., Q. Guo, W. Wang, et al. "Integration design of millimeter-wave filtering patch antenna array with SIW four-way anti-phase filtering power divide," IEEE Access, Vol. 7, 49804-49812, 2019.
doi:10.1109/ACCESS.2019.2909771

12. Ebrahimpouri, M., S. Nikmehr, and A. Pourziad, "Broadband compact SIW phase shifter using omega particles," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 11, 748-750, 2014.
doi:10.1109/LMWC.2014.2350692

13. Ghaffar, F. A. and A. Shamim, "A partially magnetized ferrite LTCC based SIW phase shifter for phased array applications," IEEE Transactions on Magnetics, Vol. 51, No. 6, 1-1, 2015.
doi:10.1109/TMAG.2015.2404303

14. Muneer, B., Z. Qi, and X. Shanjia, "A broadband tunable multilayer substrate integrated waveguide phase shifter," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 4, 220-222, 2015.
doi:10.1109/LMWC.2015.2400923

15. Nafe, A. and A. Shamim, "An integrable SIW phase shifter in a partially magnetized ferrite LTCC package," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 7, 2264-2274, 2015.
doi:10.1109/TMTT.2015.2436921

16. Peng, H., P. Jiang, T. Yang, et al. "Continuously tunable SIW phase shifter based on the buried varactors," IEICE Electronics Express, Vol. 12, No. 7, 20150165, 2015.
doi:10.1587/elex.12.20150165

17. Djerafi, T., D. Hammou, K. Wu, et al. "Ring-shaped substrate integrated waveguide Wilkinson power dividers/combiners," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 9, 1461-1469, 2014.
doi:10.1109/TCPMT.2014.2342156

18. Khan, A. A. and M. K. Mandal, "Miniaturized substrate integrated waveguide (SIW) power dividers," IEEE Microwave and Wireless Components Letters, 1-3, 2016.

19. Danaeian, M., A. R. Moznebi, K. Afrooz, et al. "Miniaturised equal/unequal SIW power divider with bandpass response loaded by CSRRs," Electronics Letters, Vol. 52, No. 22, 1864-1866, 2016.
doi:10.1049/el.2016.2203

20. Yang, Z., W. Chen, H. Lin, et al. "A novel SIW power divider with good out-of-band rejection and isolation," IEICE Electronics Express, Vol. 13, No. 8, 20160160, 2016.
doi:10.1587/elex.13.20160160

21. Huang, Y. M., W. Jiang, H. Jin, et al. "Substrate-integrated waveguide power combiner/divider incorporating absorbing material," IEEE Microwave and Wireless Components Letters, Vol. PP, No. 99, 1-3, 2017.

22. Jin, H., Z. Zhu, and R. Cheng, "Novel broadband coupler based on corrugated half mode substrate integrated waveguide," IEICE Electronics Express, Vol. 12, No. 24, 20150896, 2015.
doi:10.1587/elex.12.20150896

23. Jin, H., Y. Zhou, Y. M. Huang, et al. "Miniaturized broadband coupler made of slow-wave halfmode substrate integrated waveguide," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 2, 132-134, 2017.
doi:10.1109/LMWC.2016.2646915

24. Liu, Z. and G. Xiao, "Design of SIW-based multi-aperture couplers using ray tracing method," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 1, 106-113, 2017.
doi:10.1109/TCPMT.2016.2626382

25. Lian, J. W., Y. L. Ban, J. Q. Zhu, et al. "Compact 2-D scanning multibeam array utilizing SIW three-way couplers at 28GHz," IEEE Antennas and Wireless Propagation Letters, 1-1, 2018.

26. Hagag, M. F., R. Zhang, and D. Peroulis, "High-performance tunable narrowband SIW cavitybased quadrature hybrid coupler," IEEE Microwave and Wireless Components Letters, 1-3, 2018.

27. Lee, J. G. and J. H. Lee, "Zeroth order resonance loop antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 994-997, 2007.
doi:10.1109/TAP.2007.891875

28. Feng, W., Y. W. Qiu, W. S. Xiao, et al. "Compact UWB bandpass filter with dual notched bands based on SCRLH resonator," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 28-30, 2011.
doi:10.1109/LMWC.2010.2088113

29. Mohan, M. P., A. Alphones, and M. F. Karim, "Triple band filter based on double periodic CRLH resonator," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 3, 212-214, 2018.
doi:10.1109/LMWC.2018.2804171

30. Abdalla, M. A. and K. S. Mahmoud, "A compact SIW metamaterial coupled gap zeroth order bandpass filter with two transmission zeros," IEEE International Congress on Advanced Electromagnetic Materials in Microwaves & Optics, IEEE, 2016.

31. Ahmed, F. D., T. H. Omar, and A. A. Mahmoud, "Ultra compact quad band resonator based on novel D-CRLH configuration," IEEE International Symposium on Antennas and Propagation, IEEE, 2017.

32. Yang, T., P. L. Chi, R. M. Xu, et al. "Folded substrate integrated waveguide based composite right/left-handed transmission line and its application to partial-plane filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 789-799, 2013.
doi:10.1109/TMTT.2012.2231431

33. Karim, M. F., L. C. Ong, B. Luo, et al. "A compact SIW bandpass filter based on modified CRLH," 2012 Asia Pacific Microwave Conference Proceedings, IEEE, 2012.