1. Kim, Y. S., S. Seok, J. S. Lee, et al. "Optimizing anode location in impressed current cathodic protection system to minimize underwater electric field using multiple linear regression analysis and artificial neural network methods," Engineering Analysis with Boundary Elements, Vol. 96, 84-93, 2018.
doi:10.1016/j.enganabound.2018.08.012
2. Chung, H. J., C. S. Yang, G. W. Jeung, et al. "Accurate prediction of unknown corrosion currents distributed on the hull of a naval ship utilizing material sensitivity analysis," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1282-1285, 2011.
doi:10.1109/TMAG.2010.2089436
3. Lu, J., R. Yue, and F. Yu, "Monitoring and analysis of the marine underwater electric field of the typical shallow sea area," Near-Surface Geophysics and Environment Protection, Vol. 36, 35-40, 2012.
4. Schaefer, D., J. Doose, M. Pichlmaier, et al. "Conversion of UEP signatures between different environmental conditions using shaft currents," IEEE Journal of Oceanic Engineering, Vol. 42, 1-7, 2014.
5. Kim, Y. S., S. J. Ko, S. Lee, et al. "Computational interpretation of the relation between electric field and the applied current for cathodic protection under different conductivity environments," Metals and Materials International, Vol. 24, No. 2, 315-326, 2018.
doi:10.1007/s12540-018-0034-6
6. Kim, Y. S., S. K. Lee, H. J. Chung, et al. "Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle," Ocean Engineering, Vol. 148, 223-233, 2018.
doi:10.1016/j.oceaneng.2017.11.027
7. Baklezos, A. T., C. D. Nikolopoulos, and C. N. Capsalis, "An equivalent dipole method with novel measurement positioning for modeling electric emissions in space missions," Electromagnetics, Vol. 37, No. 7, 439-453, 2017.
doi:10.1080/02726343.2017.1376902
8. Chen, Z. Y. and S. H. Zhou, "SLF electromagnetic fields in stratified media," Applied Mechanics and Materials, Vol. 263, 35-38, 2012.
doi:10.4028/www.scientific.net/AMM.263-266.35
9. Raicevic, N. B., S. R. Aleksic, and S. S. Ilic, "Hybrid boundary element method for multi-layer electrostatic and magnetostatic problems," Electromagnetics, Vol. 30, No. 6, 507-524, 2010.
doi:10.1080/02726343.2010.499067
10. Holmes, J. J., "Application of models in the design of underwater electromagnetic signature reduction systems," Naval Engineers Journal, Vol. 119, No. 4, 19-29, 2007.
doi:10.1111/j.1559-3584.2007.00083.x
11. Wang, Y. and K. J. Karisallen, "Comparison of impressed current cathodic protection numerical modeling results with physical scale modeling data," Corrosion, Vol. 66, No. 10, 1-15, 2010.
doi:10.5006/1.3500829
12. Santos, W. J., J. F. Santiago, and J. C. F. Telles, "Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions," Engineering Analysis with Boundary Elements, Vol. 46, 67-74, 2014.
doi:10.1016/j.enganabound.2014.05.009
13. Lan, Z., X. Wang, B. Hou, et al. "Simulation of sacrificial anode protection for steel platform using boundary element method," Engineering Analysis with Boundary Elements, Vol. 36, 903-906, 2012.
doi:10.1016/j.enganabound.2011.07.018
14. Kim, Y. S., J. Kim, D. Choi, et al. "Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method," Engineering Analysis with Boundary Elements, Vol. 77, 36-48, 2017.
doi:10.1016/j.enganabound.2017.01.003
15. Abootalebi, O., A. Kermanpur, M. R. Shishesaz, et al. "Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method," Corrosion Science, Vol. 52, 678-687, 2010.
doi:10.1016/j.corsci.2009.10.025
16. Diaz, E. S. and R. Adey, "Optimising the location of anodes in cathodic protection systems to smooth potential distribution," Advances in Engineering Software, Vol. 36, 591-598, 2005.
doi:10.1016/j.advengsoft.2005.03.003
17. Wang, X., Q. Xu, and J. Zhang, "Simulating underwater electric field signal of ship using the boundary element method," Progress In Electromagnetics Research M, Vol. 76, 43-54, 2018.
doi:10.2528/PIERM18092706
18. Ditchfield, R. W., J. N. Mcgrath, and D. J. Tighe-Ford, "Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection," Journal of Applied Electrochemistry, Vol. 25, 54-60, 1995.
19. Xing, S. H., Y. Li, H. Q. Song, et al. "Optimization the quantity, locations and output currents of anodes to improve cathodic protection effect of semi-submersible crane vessel," Ocean Engineering, Vol. 113, 144-150, 2016.
doi:10.1016/j.oceaneng.2015.12.047