Vol. 88
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-08
The Diffraction by the Half-Plane with the Fractional Boundary Condition
By
Progress In Electromagnetics Research M, Vol. 88, 101-110, 2020
Abstract
The electromagnetic plane wave diffraction by the half-plane with fractional boundary conditions is considered in this article. The theoretical part is given based on that the near field, pointing vector and energy density distribution are calculated for different values of the fractional order. The results are compared with classical cases for marginal values of the fractional order. Interesting results are obtained for fractional orders between marginal values. Results are analyzed.
Citation
Eldar I. Veliyev, Vasil Tabatadze, Kamil Karaçuha, and Ertuğrul Karaçuha, "The Diffraction by the Half-Plane with the Fractional Boundary Condition," Progress In Electromagnetics Research M, Vol. 88, 101-110, 2020.
doi:10.2528/PIERM19102408
References

1. Samko, S. G., A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Langhorne, PA, USA, 1993.

2. Onal, N. O., K. Karacuha, G. H. Erdinc, B. B. Karacuha, and E. Karacuha, "A mathematical approach with fractional calculus for the modelling of children’s physical development," Computational and Mathematical Methods in Medicine, Vol. 2019, Article ID 3081264, 13 pages, 2019, https://doi.org/10.1155/2019/3081264.

3. Axtell, M. and M. E. Bise, "Fractional calculus application in control systems," Proceedings of the IEEE 1990 National Aerospace and Electronics Conference (NAECON 1990), Pittsburgh, PA, USA, June 1990.

4. Engheta, N., "Use of fractional integration to propose some “fractional” solutions for the scalar Helmholtz Equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

5. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

6. Engheta, N., "Phase and amplitude of fractional-order intermediate wave," Microwave and Optical Technology Letters, Vol. 21, No. 5, 338-343, 1999.
doi:10.1002/(SICI)1098-2760(19990605)21:5<338::AID-MOP10>3.0.CO;2-P

7. Veliev, E. I., T. M. Ahmedov, and M. V. Ivakhnychenko, "Fractional operators approach and fractional boundary conditions," Electromagnetic Waves, 28, Zhurbenko V. (editor), IntechOpen, Rijeka, Croatia, 2011, doi: 10.5772/16300.

8. Veliev, E. I., M. V. Ivakhnychenko, and T. M. Ahmedov, "Fractional boundary conditions in plane waves diffraction on a strip," Progress In Electromagnetics Research, Vol. 79, 443-462, 2008.
doi:10.2528/PIER07102406

9. Ivakhnychenko, M. V., E. I. Veliev, and T. M. Ahmedov, "Scattering properties of the strip with fractional boundary conditions and comparison with the impedance strip," Progress In Electromagnetics Research, Vol. 2, 189-205, 2008.
doi:10.2528/PIERC08031502

10. Tabatadze, V., K. Karacuha, and E. I. Veliev, "The fractional derivative approach for the diffraction problems: plane wave diffraction by two strips with the fractional boundary conditions," Progress In Electromagnetics Research, Vol. 95, 251-264, 2019.
doi:10.2528/PIERC19062505

11. Karacuha, K., E. I. Veliyev, V. Tabatadze, and E. Karacuha, "Analysis of current distributions and radar cross sections of line source scattering from impedance strip by fractional derivative method," Advanced Electromagnetics, Vol. 8, No. 2, 108-113, 2019.
doi:10.7716/aem.v8i2.981

12. Bowman, J. J., T. B. Senior, and P. L. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Revised Edition), 747 p., Hemisphere Publishing Corp., New York, No individual items are abstracted in this volume, 1987.

13. Idemen, M. and A. Alkumru, "Relativistic scattering of a plane-wave by a uniformly moving halfplane," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3429-3440, 2006.
doi:10.1109/TAP.2006.884305

14. Da Rosa, G. S., J. L. Nicolini, and F. J. V. Hasselmann, "Relativistic aspects of plane wave scattering by a perfectly conducting half-plane with uniform velocity along an arbitrary direction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 9, 4759-4767, 2017.
doi:10.1109/TAP.2017.2722861

15. Carlson, J. F. and A. E. Heins, "The reflection of an electromagnetic plane wave by an infinite set of plates," Quart. Appl. Math., Vol. 4, 313-329, 1947.
doi:10.1090/qam/19523

16. Senior, T. B. A., "Diffraction by a semi-infinite metallic sheet," Proc. Roy. Soc. London, Seria A, Vol. 213, 436-458, 1952.

17. Senior, T. B. A., "Diffraction by an imperfectly conducting half plane at oblique incidence," Appl. Sci. Res., Vol. B8, 35-61, 1959.

18. Veliev, E. I., "Plane wave diffraction by a half-plane: A new analytical approach," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 10, 1439-1453, 1999.
doi:10.1163/156939399X00772

19. Prudnikov, H. P., Y. H. Brychkov, and O. I. Marichev, Special Functions, Integrals and Series, Vol. 2, Gordon and Breach Science Publishers, 1986.

20. Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181