Vol. 166
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-12-23
Modulation on Silicon for Datacom: Past, Present, and Future (Invited Review)
By
Progress In Electromagnetics Research, Vol. 166, 119-145, 2019
Abstract
Datacenters become an important part of technical infrastructure. The Datacom traffic grows exponentially to satisfy the demands in IT services, storage, communications, and networking to the growing number of networked devices and users. High bandwidth and energy efficient optical interconnects are critical to improve overall productivity and efficiency in data centers. Mega-data centers are expected to address the power consumption and the cost in which optical interconnects contribute quite a large part. Silicon photonics is a promising platform to offer savings in power and potential increase in bandwidth for Datacom. Several modulation techniques are developed in silicon photonics to reduce the optical mode volume or enhance the light matter effectto further improve the modulation efficiency. Many other materials such as III-V and LiNbO3 are integrated on silicon photonics to maximize the optical link performance. This paper reviews several modulation techniques for Datacom, from VCSEL direct modulation to silicon photonics modulators then to hybrid silicon modulators.
Citation
Binhao Wang, Qiangsheng Huang, Kaixuan Chen, Jianhao Zhang, Geza Kurczveil, Di Liang, Samuel Palermo, Michael R. T. Tan, Raymond G. Beausoleil, and Sailing He, "Modulation on Silicon for Datacom: Past, Present, and Future (Invited Review)," Progress In Electromagnetics Research, Vol. 166, 119-145, 2019.
doi:10.2528/PIER19102405
References

1. Amann, M.-C. and W. Hofmann, "InP-based long-wavelength VCSELs and VCSEL arrays," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, 861-868, 2009.
doi:10.1109/JSTQE.2009.2013182

2. Naoe, K., "High speed InP lasers for 400 GbE," Proc. European Conference on Optical Communication (ECOC), Th1D.1, 2019.

3. Thomson, D., A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fedeli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, "Roadmap on silicon photonics," Journal of Optics, Vol. 18, No. 7, 073003, 2016.
doi:10.1088/2040-8978/18/7/073003

4. Komljenovic, T., D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, "Photonic integrated circuits using heterogeneous integration on silicon," Proceedings of the IEEE, Vol. 106, No. 12, 2246-2257, 2018.
doi:10.1109/JPROC.2018.2864668

5. Samani, A., M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, "A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system," IEEE Photonics Journal, Vol. 7, No. 3, 7901413, 2015.
doi:10.1109/JPHOT.2015.2426875

6. Manipatruni, S., K. Preston, L. Chen, and M. Lipson, "Ultra-low voltage, ultra-small mode volume silicon microring modulator," Optics Express, Vol. 18, No. 17, 18235-18242, 2010.
doi:10.1364/OE.18.018235

7. Nguyen, H. C., S. Hashimoto, M. Shinkawa, and T. Baba, "Compact and fast photonic crystal silicon optical modulators," Optics Express, Vol. 20, No. 20, 22465-22474, 2012.
doi:10.1364/OE.20.022465

8. Melikyan, A., L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, "High-speed plasmonic phase modulators," Nature Photonics, Vol. 8, 229-233, 2014.
doi:10.1038/nphoton.2014.9

9. Kuo, Y.-H., Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature, Vol. 437, 1334-1336, 2005.
doi:10.1038/nature04204

10. Wang, C., M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Vol. 562, 101-104, 2018.
doi:10.1038/s41586-018-0551-y

11. Schow, C. L. and K. Schmidtke, "INTREPID: Developing power efficient analog coherent interconnects to transform data center networks," Optical Fiber Communications Conference and Exhibition (OFC), M4D.9, 2019.

12. Kerrebrouck, J. V., X. Pang, O. Ozolins, R. Lin, A. Udalcovs, L. Zhang, H. Li, S. Spiga, M.- C. Amann, L. Gan, M. Tang, S. Fu, R. Schatz, G. Jacobsen, S. Popov, D. Liu, W. Tong, G. Torfs, J. Bauwelinck, J. Chen, and X. Yin, "High-speed PAM4-based optical SDM interconnects with directly modulated long-wavelength VCSEL," IEEE/OSA Journal of Lightwave Technology, Vol. 37, No. 2, 356-362, 2019.
doi:10.1109/JLT.2018.2875538

13. Huynh, T. N., et al. "4×50 Gb/s NRZ shortwave-wavelength division multiplexing VCSEL link over 50m multimode fiber," Optical Fiber Communications Conference and Exhibition (OFC), Tu2B.5, 2017.
doi:10.1364/OFC.2017.Tu2B.5

14. Lin, C.-K., A. Tandon, K. Djordjev, S.W. Corzine, and M. R. T. Tan, "High-speed 985 nm bottomemitting VCSEL arrays for chip-to-chip parallel optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, 1332-1339, 2007.
doi:10.1109/JSTQE.2007.906794

15. Tan, M. R. T., P. Rosenberg, W. V. Sorin, B. Wang, S. Mathai, G. Panotopoulos, and G. Rankin, "Universal photonic interconnect for data centers," IEEE/OSA Journal of Lightwave Technology, Vol. 36, 175-180, 2018.
doi:10.1109/JLT.2017.2747501

16. Hatakeyama, H., T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, and M. Tsuj, "Highly reliable high-speed 1.1-μm-range VCSELs with InGaAs/GaAsP-MQWs," IEEE Journal of Quantum Electronics, Vol. 46, 890-897, 2010.
doi:10.1109/JQE.2010.2040583

17. Lavrencik, J., S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, "4λ × 100 Gbps VCSEL PAM-4 transmission over 105m of wide band multimode fiber," Optical Fiber Communications Conference and Exhibition (OFC), Tu2B.5, 2017.

18. Ralph, S. E. and J. Lavrencik, "High capacity VCSEL links," Optical Fiber Communications Conference and Exhibition (OFC), Tu3A.1, 2019.

19. Horst, F., W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, "Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-) multiplexing," Optics Express, Vol. 21, 11652-11658, 2013.
doi:10.1364/OE.21.011652

20. Dai, D., J. Wang, S. Chen, S. Wang, and S. He, "Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing," Laser Photonics Review, Vol. 9, 339-344, 2015.
doi:10.1002/lpor.201400446

21. Pathak, S., P. Dumon, D. van Thourhout, and W. Bogaerts, "Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator," IEEE Photonics Journal, Vol. 6, 1-9, 2014.
doi:10.1109/JPHOT.2014.2361658

22. Simpanen, E., J. S. Gustavsson, A. Larsson, M. Karlsson, W. V. Sorin, S. Mathai, M. R. Tan, and S. R. Bickham, "1060 nm single-mode VCSEL and single-mode fiber links for long-reach optical interconnects," IEEE/OSA Journal of Lightwave Technology, Vol. 37, 2963-2969, 2019.
doi:10.1109/JLT.2019.2908249

23. Tan, M. R. T., B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, "50 Gb/s PAM4 modulated 1065 nm single-mode VCSELs using SMF-28 for mega-data centers," IEEE Photonics Technology Letters, Vol. 29, 1128-1131, 2017.
doi:10.1109/LPT.2017.2707058

24. Karinou, F., N. Stojanovic, A. Daly, C. Neumeyr, and M. Ortsiefer, "1.55-μm long-wavelength VCSEL-based optical interconnects for short-reach networks," IEEE/OSA Journal of Lightwave Technology, Vol. 34, 2897-2904, 2016.
doi:10.1109/JLT.2015.2505359

25. Malacarne, A., F. Falconi, C. Neumeyr, W. Soenen, C. Porzi, T. Aalto, J. Rosskopf., M. Chiesa, J. Bauwelinck, and A. Bogon, "Low-power 1.3-μm VCSEL transmitter for data center interconnects and beyond," Proc. European Conference on Optical Communication (ECOC), M.2.C.5, 2017.

26. Kapon, E. and A. Sirbu, "Long-wavelength VCSELs: Power-efficient answer," Nature Photonics, Vol. 3, 27-29, 2009.
doi:10.1038/nphoton.2008.266

27. Tansu, N., N. J. Kirsch, and L. J. Mawst, "Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers," Applied Physics Letters, Vol. 81, No. 14, 2523, 2002.
doi:10.1063/1.1511290

28. Liu, A., R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, Vol. 427, 615-618, 2004.
doi:10.1038/nature02310

29. Sun, C., et al. "Single-chip microprocessor that communicates directly using light," Nature, Vol. 528, 534-538, 2015.
doi:10.1038/nature16454

30. Atabaki, A. H., et al. "Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip," Nature, Vol. 556, 349-354, 2018.
doi:10.1038/s41586-018-0028-z

31. Idjadi, M. H. and F. Aflatouni, "Integrated Pound-Drever-Hall laser stabilization system in silicon," Nature Communications, Vol. 8, 1209, 2017.
doi:10.1038/s41467-017-01303-y

32. El-Fiky, E., A. Samani, M. S. Alam, M. Sowailem, O. Carpentier, M. Jacques, L. Guenin, D. Patel, and D. V. Plant, "A 4-lane 400 Gb/s silicon photonic transceiver for intra-datacenter optical interconnects," Optical Fiber Communications Conference and Exhibition (OFC), Th3A.3, 2019.

33. Shi, T., T. Su, N. Zhang, C. Hong, and D. Pan, "Silicon photonics platform for 400G data center applications," Optical Fiber Communications Conference and Exhibition (OFC), M3F.4, 2018.
doi:10.1364/OFC.2018.M3F.4

34. Nagarajan, R., M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, "Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects," Journal of Optical Communications and Networking, Vol. 10, No. 7, B25-B36, 2018.
doi:10.1364/JOCN.10.000B25

35. Harris, N. C., Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, "Efficient, compact and low loss thermo-optic phase shifter in silicon," Optics Express, Vol. 22, No. 9, 10487-10493, 2014.
doi:10.1364/OE.22.010487

36. Doylend, J. K., M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, "Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator," Optics Express, Vol. 19, No. 22, 21595-21604, 2011.
doi:10.1364/OE.19.021595

37. Soref, R. and B. Bennett, "Electrooptical effects in silicon," IEEE Journal of Quantum Electronics, Vol. 23, 123-129, 1987.
doi:10.1109/JQE.1987.1073206

38. Reed, G. T., G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, Vol. 4, 518-526, 2010.
doi:10.1038/nphoton.2010.179

39. Debnath, K., D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M. K. Husain, K. Ibukuro, F. Y. Gardes, G. T. Reed, and S. Saito, "All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor," Photonics Research, Vol. 6, 373-379, 2018.

40. Webster, M., C. Appel, P. Gothoskar, S. Sunder, B. Dama, and K. Shastri, "Silicon photonic modulator based on a MOS-capacitor and a CMOS driver," IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2014.

41. Milivojevic, B., S. Wiese, J. Whiteaway, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. P. Anderson, B. Dama, and K. ShastrI, "Silicon high speed modulator for advanced modulation: Device structures and exemplary modulator performance," Proc. Silicon Photonics IX, Vol. 8990, 899013, 2014.

42. Titriku, A., C. Li, A. Shafik, and S. Palermo, "Efficiency modeling of tuning techniques for silicon carrier injection ring resonators," IEEE Optical Interconnects Conference (OI), 13-14, 2014.

43. Chen, C. H., C. Li, A. Shafik, M. Fiorentino, P. Chiang, S. Palermo, and R. Beausoleil, "A WDM silicon photonic transmitter based on carrier-injection microring modulators," IEEE Optical Interconnects Conference (OI), 121-122, 2014.

44. Xu, Q., S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Optics Express, Vol. 15, 430-436, 2007.

45. Li, M., L. Wang, X. Li, X. Xiao, and S. Yu, "Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications," Photonics Research, Vol. 6, No. 2, 109-116, 2018.

46. Miller, D. A. B., "Energy consumption in optical modulators for interconnects," Optics Express, Vol. 20, No. 102, 293-308, 2012.

47. Liu, A., L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Optics Express, Vol. 15, No. 2, 660-668, 2007.

48. Sharif Azadeh, S., S. Romero-Garc´ıa, F. Merget, A. Moscoso-M´artir, N. von den Driesch, D. Buca, and J. Witzens, "Epitaxially grown vertical junction phase shifters for improved modulation efficiency in silicon depletion-type modulators," Proc. SPIE Integrated Optics: Physics and Simulations II, Vol. 9516, 95160T, May 2015.

49. Azadeh, S. S., F. Merget, S. Romero-Garc´ıa, A. Moscoso-M´artir, N. von den Driesch, J. M¨uller, S. Mantl, D. Buca, and J. Witzens, "Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters," Optics Express, Vol. 23, No. 18, 23526-23550, 2015.

50. Dong, P., L. Chen, and Y.-K. Chen, "High-speed low-voltage single-drive push-pull silicon Mach- Zehnder modulators," Optics Express, Vol. 20, No. 6, 6163-6169, 2012.

51. Streshinsky, M., R. Ding, Y. Liu, et al. "Low power 50Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm," Optics Express, Vol. 21, No. 25, 30350-30357, 2013.

52. Li, Z.-Y., D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J.-Z. Yu, "Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions," Optics Express, Vol. 17, No. 18, 15947-15958, 2009.

53. Xiao, X., H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, "25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions," Optics Express, Vol. 20, 2507-2515, 2012.

54. Rosenberg, J. C., W. M. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, "A 25Gbps silicon microring modulator based on an interleaved junction," Optics Express, Vol. 20, 26411-26423, 2012.

55. Thomson, D. J., F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, "50-Gb/s silicon optical modulator," IEEE Photonics Technology Letters, Vol. 24, No. 4, 234-236, 2012.

56. Xiao, X., H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, "High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization," Optics Express, Vol. 21, No. 4, 4116-4125, 2013.

57. Ziebell, M., D. Marris-Morini, G. Rasigade, J.-M. F´ed´eli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, "40 Gbit/s low-loss silicon optical modulator based on a pipin diode," Optics Express, Vol. 20, No. 10, 10591-10596, 2012.

58. Tu, X., T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, "50 Gb/s silicon optical modulator with traveling-wave electrodes," Optics Express, Vol. 21, No. 10, 12776-12782, 2013.

59. Gardes, F. Y., D. J. Thomson, N. G. Emerson, and G. T. Reed, "40 Gb/s silicon photonics modulator for TE and TM polarisations," Optics Express, Vol. 19, No. 12, 11804-11814, 2011.

60. Yong, Z., W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, "U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band," Optics Express, Vol. 25, No. 7, 8425-8439, 2017.

61. Gardes, F. Y., A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martı, "High-speed modulation of a compact silicon ring resonator based on a reverse-biased PN diode," Optics Express, Vol. 17, No. 24, 21986-21991, 2009.

62. Xiao, X., H. Xu, X. Li, Z. Li, T. Chu, J. Yu, and Y. Yu, "60 Gbit/s silicon modulators with enhanced electro-optical efficiency," Optical Fiber Communications Conference and Exhibition (OFC), W4J.3, 2013.

63. Yang, Y., Q. Fang, M. Yu, X. Tu, R. Rusli, and G.-Q. Lo, "High-efficiency Si optical modulator using Cu travelling-wave electrode," Optics Express, Vol. 22, 29978-29985, 2014.

64. Xu, H., X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, "High speed silicon Mach-Zehnder modulator based on interleaved PN junctions," Optics Express, Vol. 20, 15093-15099, 2012.

65. Pantouvaki, M., P. Verheyen, J. De Coster, G. Lepage, P. Absil, and J. van Campenhout, "56 Gb/s ring modulator on a 300 mm silicon photonics platform," European Conference on Optical Communication (ECOC), 2015.

66. Pitris, S., M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. de Heyn, J. van Campenhout, and N. Pleros, "A 4×40 Gb/s O-band WDM silicon photonic transmitter based on micro-ring modulators," Optical Fiber Communications Conference and Exhibition (OFC), W3E.2, 2019.

67. Dube-Demers, R., S. LaRochelle, and W. Shi, "Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator," Optica, Vol. 3, No. 6, 622-627, 2016.

68. Liu, K., C. R. Ye, S. Khan, and V. J. Sorger, "Review and perspective on ultrafast wavelength-size electro-optic modulators," Lasers & Photonics Reviews, Vol. 9, No. 2, 172-194, 2015.

69. Wang, B., C. Li, C.-H. Chen, K. Yu, M. Fiorentino, R. G. Beausoleil, and S. Palermo, "A compact Verilog-A model of silicon carrier-injection ring modulators for optical interconnect transceiver circuit design," IEEE/OSA Journal of Lightwave Technology, Vol. 34, 2996-3005, 2016.

70. Chen, C. H., C. Li, A. Shafik, M. Fiorentino, P. Chiang, S. Palermo, and R. Beausoleil, "A WDM silicon photonic transmitter based on carrier-injection microring modulators," IEEE Optical Interconnects Conference (OI), 121-122, 2014.

71. Li, C., R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, C. H. Chen, Z. Peng, M. Fiorentino, R. G. Beausoleil, P. Chiang, and S. Palermo, "Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 49, 1419-1436, 2014.

72. Li, H., Z. Xuan, A. Titriku, C. Li, K. Yu, B. Wang, A. Shafik, N. Qi, Y. Liu, R. Ding, T. Baehr- Jones, M. Fiorentino, M. Hochberg, S. Palermo, and P. Y. Chiang, "A 25 Gb/s, 4.4 V-Swing, ACcoupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid State Circuits, Vol. 50, 3145-3159, 2015.

73. Wang, B., K. Yu, H. Li, P. Y. Chiang, and S. Palermo, "Energy efficiency comparisons of NRZ and PAM4 modulation for ring-resonator-based silicon photonic links," IEEE International Midwest Symposium on Circuits and Systems, 2015.

74. Roshan-Zamir, A., B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, "A 40Gb/s PAM4 silicon microring resonator modulator transmitter in 65 nm CMOS," IEEE Optical Interconnects Conference (OI), 8-9, 2016.

75. Roshan-Zamir, A., B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, "A two-segment optical DAC 40 Gbps PAM4 silicon microring resonator modulator transmitter," IEEE Optical Interconnects Conference (OI), 5-6, 2017.

76. Sun, J., M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, "A 128Gb/s PAM4 silicon microring modulator," Optical Fiber Communications Conference and Exhibition (OFC), Th4A.7, 2018.

77. Li, H., G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, "A 112 Gb/s PAM4 transmitter with silicon photonics microring modulator and CMOS driver," Optical Fiber Communications Conference and Exhibition (OFC), Th4A.7, 2019.

78. Xu, Q., B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature, Vol. 435, 325-327, 2005.

79. Liu, A., R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nico-laescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature, Vol. 427, 615-618, 2004.

80. Sugawara, M. and M. Usami, "Quantum dot devices handling the heat," Nature Photonics, Vol. 3, 30-31, 2009.

81. Ortner, G., C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, "External cavity InAs/InP quantum dot laser with a tuning range of 166 nm," Apply Physics Letters, Vol. 88, 121119, 2006.

82. Capua, A., L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, and D. Bimberg, "Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser," Optics Express, Vol. 15, 5388-5393, 2007.

83. Azouigui, S., D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschutz, J. Koeth, I. Krestnikov, A. Kovsh, and A. Ramdane, "Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3-μm DFB quantum-dot lasers," IEEE Photonics Technology Letters, Vol. 23, 582-584, 2011.

84. Liang, D. and J. E. Bowers, "Highly efficient vertical outgassing channels for low-temperature InPto- silicon direct wafer bonding on the silicon-on-insulator substrate," Journal of Vacuum Science & Technology B, Vol. 26, 1560, 2008.

85. Kurczveil, G., D. Liang, M. Fiorentino, and R. G. Beausoleil, "Robust hybrid quantum dot laser for integrated silicon photonics," Optics Express, Vol. 24, 16167-16174, 2016.

86. Kurczveil, G., C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. G. Beausoleil, "On-chip hybrid silicon quantum dot comb laser with 14 error-free channels," Proc. IEEE International Semiconductor Laser Conference (ISLC), 1-2, 2018.

87. Nguyen, H. C., Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, "10Gb/s operation of photonic crystal silicon optical modulators," Optics Express, Vol. 19, No. 14, 13000-13007, 2011.

88. Terada, Y., K. Kondo, R. Abe, and T. Baba, "Full C-band Si photonic crystal waveguide modulator," Optics Letters, Vol. 42, No. 24, 5110-5112, 2017.

89. Shakoor, A., K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, "Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy," Optics Express, Vol. 22, No. 23, 28623-28634, 2014.

90. Zhang, J., X. Leroux, E. Dur´an-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. He, and E. Cassan, "Generating Fano resonances in a single-waveguide silicon nanobeam cavity for efficient electro-optical modulation," ACS Photonics, Vol. 5, No. 11, 4229-4237, 2018.

91. Marshall, O., M. Hsu, Z. Wang, B. Kunert, C. Koos, and D. van Thourhout, "Heterogeneous integration on silicon photonics," Proceedings of the IEEE, Vol. 106, No. 12, 2258-2269, 2018.

92. Heck, M. J., H.-W. Chen, A.-W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, and J. E. Bowers, "Hybrid silicon photonics for optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 2, 333-346, 2010.

93. Alloatti, L., R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, and C. Koos, "100 GHz silicon-organic hybrid modulator," Light: Science & Applications, Vol. 3, No. 5, e173, 2014.

94. Hu, Y., M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. van Thourhout, "Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon," Laser & Photonics Reviews, Vol. 10, No. 2, 307-316, 2016.