Vol. 87
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-21
Integrated Model for Design of SWS and Beam-Wave Interaction Analysis of a Planar THz Sheet-Beam TWT
By
Progress In Electromagnetics Research M, Vol. 87, 179-187, 2019
Abstract
A computationally efficient, integrated and dynamic model has been developed for the design of a planar Slow Wave Structure (SWS) and beam-wave interaction analysis of a planar THz Traveling Wave Tube (TWT) with sheet beam. A Staggered Double Vane-Slow Wave Structure (SDV-SWS) is used for its numerous advantages over other types of SWSs. The integrated model determines RF performance of a planar TWT directly from the given beam voltage and center frequency by performing three different tasks, (i) determining geometrical parameters of a SDV-SWS of maximum possible bandwidth and high interaction impedance, (ii) determining RF circuit parameters of a SDV-SWS, and (iii) performing beam-wave interaction analysis of a planar TWT. The model was developed by adopting numerically computing environment, MATLAB. Also, highly accurate numerical techniques with double precision were used, e.g. Sixth Order Runge Kutta Method was used for electron beam dynamic. The model was used to design and simulate a 0.22 THz Sheet Beam TWT of 100W output power. The energy balance factor was achieved within ±0.001% over a very wide dynamic range from even 100 dB below saturation to more than 10 dB above saturation. The power growth of the forward wave was achieved with exactly 1 dB/dB. The program is fast enough for interactive use on a standard computer with a basic configuration. The model has been compared with the published works using 3D electromagnetic field simulator for demonstrating its accuracy.
Citation
Aakash Bansal, Vishnu Srivastava, and Richa Gupta, "Integrated Model for Design of SWS and Beam-Wave Interaction Analysis of a Planar THz Sheet-Beam TWT," Progress In Electromagnetics Research M, Vol. 87, 179-187, 2019.
doi:10.2528/PIERM19102304
References

1. Federici, J. F., B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveria, and D. Zimdars, "THz imaging and sensing for security applications," Semicond. Sci. Technology, Vol. 20, No. 7, S266-S280, Jul. 2005.
doi:10.1088/0268-1242/20/7/018

2. Sirtori, C., "Applied physics: Bridge for the terahertz gap," Nature, Vol. 417, No. 9, 132-133, May 2002.
doi:10.1038/417132b

3. Mineo, M. and C. Paoloni, "Double corrugated rectangular waveguide slow-wave structure for terahertz vacuum devices," IEEE Transactions on Electron Devices, Vol. 57, No. 11, 3169-3175, 2010.
doi:10.1109/TED.2010.2071876

4. Goplen, B., L. Ludeking, D. Smithe, and G.Warren, "User-configurableMAGIC for electromagnetic PIC calculations," Comput. Phys. Commun., Vol. 87, No. 1, 54-86, May 1995.
doi:10.1016/0010-4655(95)00010-D

5. Srivastava, V. and R. G. Carter, "A fast large-signal model for coupled-cavity TWT," IEEE Transactions on Electron Devices, Vol. 35, No. 11, 2068-2076, Nov. 1988.
doi:10.1109/16.7429

6. Srivastava, V. and D. Sharma, "Design of a broadband planar RF structure for a 0.22 THz traveling wave tube," Universal Journal of Electrical and Electronics Engineering (USA), Vol. 5, No. 1, 9-19, 2017.
doi:10.13189/ujeee.2017.050102

7. Xie, W., Z. Cheng, J. Luo, and Q. Liu, "Theory and simulation of arbitrarily shaped grooved staggered double grating array waveguide," IEEE Transactions on Electron Device, Vol. 61, No. 6, 1707-1714, Jun. 2014.
doi:10.1109/TED.2014.2298396

8. Lei, X., Y. Wei, Y. Wang, Q. Zhou, G. Wu, C. Ding, Q. Li, L. Zhang, X. Jiang, Y. Gong, and W. Wang, "Full-wave analysis of the high-frequency characteristics of the sine waveguide slow-wave structure," AIP Advances, Vol. 7, 085111, 2017.
doi:10.1063/1.4997329

9. Srivastava, V., "Nonlinear analysis of beam-wave interaction in a planar THz travelling-wave tube amplifier," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 2, 190-203, 2017.
doi:10.1080/09205071.2017.1374217

10. Fu, C., Y. Wei, B. Zhao, Y. Yang, and Y. Ju, "One-dimensional nonlinear theory for rectangular helix traveling-wave tube," AIP Physics of Plasma, Vol. 23, 083123, 2016.
doi:10.1063/1.4961915

11. Dormand, J. R. and P. J. Prince, "A family of embedded Runge-Kutta formulae," Journal of Computational and Applied Mathematics, Vol. 6, No. 1, 19-26, Mar. 1980.
doi:10.1016/0771-050X(80)90013-3

12. Tsitouras, C. and T. E. Simos, "Optimized Runge-Kutta pairs for problems with oscillating solutions," Journal of Computational and Applied Mathematics, Vol. 147, No. 2, 397-402, Oct. 2002.
doi:10.1016/S0377-0427(02)00475-2

13. Yin, H., J. Xu, L. Yue, Y. Gong, and Y. Wei, "A method to calculate output power for sheetbeam traveling wave tube," IEEE Transactions on Electron Devices, Vol. 59, No. 12, 3630-3634, Dec. 2012.
doi:10.1109/TED.2012.2220365

14. Xie, W., Z.-C. Wang, and J. Luo, "A 3-D large signal model for sheet beam traveling wave tubes," IEEE Transactions on Electron Devices, Vol. 62, No. 3, 1010-1016, Mar. 2015.
doi:10.1109/TED.2014.2386903