Vol. 166
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-01-16
High-Sensitivity and Temperature-Insensitive Refractometer Based on TNHF Structure for Low-Range Refractive Index Measurement
By
Progress In Electromagnetics Research, Vol. 166, 167-175, 2019
Abstract
Refractive index (RI) measurements find extensive use in biochemical sensing field. However, currently available RI sensors exhibit excessive temperature crosstalk and have low sensitivity in the low RI range. To solve this, a high-sensitivity and temperature-insensitive refractometer based on a tapered no-core-hollow-core fiber (TNHF) structure is proposed for low-range RI measurement. The TNHF comprises two Mach-Zehnder interferometers that are introduced within the tapered no-core fiber and hollow-core fiber, thereby establishing a composite interference. The results of an experimental evaluation demonstrate that maximum sensitivities of 482.74 nm/RIU within an RI range of 1.335~1.3462 can be achieved, which is greater than that achieved using a traditional modal interferometer structure. Significantly, the refractometer exhibits ultra-low temperature sensitivities of 0.062 dB/°C and 6.5 pm/°C, which can alleviate the temperature crosstalk. The refractometer can be realistically applied in many fields requiring high precision RI measurement due to its advantages of low cost, ease of manufacture, high sensitivity, and temperature insensitivity.
Citation
Fang Wang, Kaibo Pang, Tao Ma, Xu Wang, and Yufang Liu, "High-Sensitivity and Temperature-Insensitive Refractometer Based on TNHF Structure for Low-Range Refractive Index Measurement," Progress In Electromagnetics Research, Vol. 166, 167-175, 2019.
doi:10.2528/PIER19102301
References

1. Caucheteur, C., T. Guo, and J. Albert, "Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection," Anal. Bioanal. Chem., Vol. 407, No. 14, 3883-3897, 2015.
doi:10.1007/s00216-014-8411-6

2. James, S. W., S. Korposh, S. Lee, and R. P. Tatam, "A long period grating-based chemical sensor insensitive to the influence of interfering parameters," Opt. Express, Vol. 22, No. 7, 8012-8023, 2014.
doi:10.1364/OE.22.008012

3. Tian, Z., S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, "Refractive index sensing with Mach-Zehnder interferometer based on concatenating two singlemode fiber tapers," IEEE Photonics Technol. Lett., Vol. 20, No. 8, 626-628, 2008.
doi:10.1109/LPT.2008.919507

4. Wang, J., Y. Jin, Y. Zhao, and X. Dong, "Refractive index sensor based on all-fiber multimode interference," Optik, Vol. 124, No. 14, 1845-1848, 2013.
doi:10.1016/j.ijleo.2012.05.042

5. Wang, Q., B. T. Wang, L. X. Kong, and Y. Zhao, "Comparative analyses of bi-tapered fiber Mach- Zehnder interferometer for refractive index sensing," IEEE Trans. Instrum. Meas., Vol. 66, No. 9, 2483-2489, 2017.
doi:10.1109/TIM.2017.2707962

6. Wang, P., G. Brambilla, M. Ding, Y. Semenova, Q.Wu, and G. Farrell, "High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference," Opt. Lett., Vol. 36, No. 12, 2233-2235, 2011.
doi:10.1364/OL.36.002233

7. Sun, L., J. Qin, Z. Tong, W. Zhang, and M. Gong, "Simultaneous measurement of refractive index and temperature based on down-taper and thin-core fiber," Opt. Commun., Vol. 426, 506-510, 2018.
doi:10.1016/j.optcom.2018.06.004

8. Wo, J., G. Wang, Y. Cui, Q. Sun, R. Liang, P. Shum, and D. Liu, "Refractive index sensor using microfiber-based Mach-Zehnder interferometer," Opt. Lett., Vol. 37, No. 1, 67-69, 2012.
doi:10.1364/OL.37.000067

9. Wang, H., H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, "Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference," Opt. Commun., Vol. 364, 191-194, 2016.
doi:10.1016/j.optcom.2015.11.015

10. Lee, B., Y. Kim, K. Park, J. Eom, M. Kim, B. Rho, and H. Choi, "Interferometric fiber optic sensors," Sensors, Vol. 12, No. 3, 2467-2486, 2012.
doi:10.3390/s120302467

11. Ahmed, F., V. Ahsani, L. Melo, P. Wild, and M. B. G. Jun, "Miniaturized tapered photonic crystal fiber Mach-Zehnder interferometer for enhanced refractive index sensing," IEEE Sens. J., Vol. 16, 8761-8766, 2016.
doi:10.1109/JSEN.2016.2566663

12. Shi, F., J. Wang, Y. Zhang, Y. Xia, and L. Zhao, "Refractive index sensor based on S-tapered photonic crystal fiber," IEEE Photonics Technol. Lett., Vol. 25, No. 4, 344-347, 2013.
doi:10.1109/LPT.2013.2238623

13. Lu, H., X. Wang, S. Zhang, F. Wang, and Y. Liu, "A fiber-optic sensor based on no-core fiber and Faraday rotator mirror structure," Opt. Laser Technol., Vol. 101, 507-514, 2018.
doi:10.1016/j.optlastec.2017.11.014

14. Cao, Y., H. Liu, Z. Tong, S. Yuan, and J. Su, "Simultaneous measurement of temperature and refractive index based on a Mach-Zehnder interferometer cascaded with a fiber Bragg grating," Opt. Commun., Vol. 342, 180-183, 2015.
doi:10.1016/j.optcom.2014.12.067

15. Yang, R., Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, "Single S-tapered fiber Mach- Zehnder interferometers," Opt. Lett., Vol. 36, No. 23, 4482-4484, 2011.
doi:10.1364/OL.36.004482

16. Chen, C., R. Yang, X. Y. Zhang, W. H. Wei, Q. Guo, X. Zhang, L. Qin, Y. Q. Ning, and Y. S. Yu, "Compact refractive index sensor based on an S-tapered fiber probe," Opt. Mater. Express, Vol. 8, No. 4, 919-925, 2018.
doi:10.1364/OME.8.000919

17. Lu, C., J. Su, X. Dong, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor," J. Lightwave Technol., Vol. 36, No. 13, 2796-2802, 2018.
doi:10.1109/JLT.2018.2825294

18. Tian, J., Z. Lu, M. Quan, Y. Jiao, and Y. Yao, "Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber," Opt. Express, Vol. 24, No. 18, 20132-20142, 2016.
doi:10.1364/OE.24.020132

19. Gao, S., W. Zhang, Z.-Y. Bai, H. Zhang, W. Lin, L. Wang, and J. Li, "Microfiber-enabled inline Fabry-P´erot interferometer for high-sensitive force and refractive index sensing," J. Lightwave Technol., Vol. 32, No. 9, 1682-1688, 2014.
doi:10.1109/JLT.2014.2310205

20. Coelho, L., D. Viegas, J. L. Santos, and J. M. M. M. Almeida, "Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties," Sensor. Actuat. Biol. Chem., Vol. 223, 45-51, 2016.
doi:10.1016/j.snb.2015.09.061

21. Shen, F., C. Wang, Z. Sun, K. Zhou, L. Zhang, and X. Shu, "Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability," Opt. Lett., Vol. 42, No. 2, 199-202, 2017.
doi:10.1364/OL.42.000199

22. Lu, H., S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, "Sb2 Te3 topological insulator: Surface plasmon resonance and application in refractive index monitoring," Nanoscale, Vol. 11, No. 11, 4759-4766, 2019.
doi:10.1039/C8NR09227C

23. Lu, J., D. Spasic, F. Delport, T. van Stappen, I. Detrez, D. Daems, S. Vermeire, A. Gils, and J. Lammertyn, "Immunoassay for detection of infliximab in whole blood using a fiber-optic surface plasmon resonance biosensor," Anal. Chem., Vol. 89, No. 6, 3664-3671, 2017.
doi:10.1021/acs.analchem.6b05092

24. Lang, C., Y. Liu, K. Cao, and S. Qu, "Temperature-insensitive optical fiber strain sensor with ultralow detection limit based oncapillary-taper temperature compensation structure," Opt. Express, Vol. 26, No. 1, 477, 2018.
doi:10.1364/OE.26.000477

25. Wang, Q., G. Farrell, and W. Yan, "Investigation on single-mode-multimode single-mode fiber structure," J. Lightwave Technol., Vol. 26, No. 5, 512-519, 2008.
doi:10.1109/JLT.2007.915205

26. Geng, Y., X. Li, X. Tan, Y. Deng, and Y. Yu, "High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper," IEEE Sens. J., Vol. 11, No. 11, 2891-2894, 2011.
doi:10.1109/JSEN.2011.2146769

27. Yan, W., Q. Han, Y. Chen, H. Song, X. Tang, and T. Liu, "Fiber-loop ring-down interrogated refractive index sensor based on an SNS fiber structure," Sensor. Actuat. Biol. Chem., Vol. 255, 2018-2022, 2018.
doi:10.1016/j.snb.2017.09.002

28. Wu, Q., Y. Semenova, P. Wang, and G. Farrell, "High sensitivity SMS fiber structure based refractometer — Analysis and experiment," Opt. Express, Vol. 19, No. 9, 7937-7944, 2011.
doi:10.1364/OE.19.007937