Vol. 92
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-15
The Deployment of Stub Structures for Mutual Coupling Reduction in MIMO Antenna Applications
By
Progress In Electromagnetics Research Letters, Vol. 92, 39-45, 2020
Abstract
This paper presents a practical scheme for threefold stubs etched on the ground plane (GP) to reduce mutual coupling between adjacent patching elements. The multiple input multiple output (MIMO) antenna array consists of two concentric polyhedron annulus patches, a conventional dielectric substrate, threefold fork-shaped stubs (TFSS) and a microstrip line feeder. The equivalent band-stop filtering function of the TFSS suppressing surface wave propagation has been demonstrated in commercial Advanced Design System (ADS) software. The results of previous case studies indicate that the mutual coupling about 5 dB to 47 dB was reduced from 8 GHz to 9.3 GHz (S11 < -10 dB) for antenna arrays. The capabilities of the antenna (in envelope correlation coefficient = 0.018, voltage standing wave ratio = 1.2892, and diversity gain = 20 dB) have been confirmed in a center frequency of 8.97 GHz. An examination of TFSS antennas shows that the side lobes in both the E-plane and the H-plane descends alongside an increasingly broad radiation pattern. The above results demonstrate that the proposed design is highly efficient in MIMO antenna applications.
Citation
Chuanhui Hao, Hongmei Zheng, Jingjing Zhang, and Xubao Sun, "The Deployment of Stub Structures for Mutual Coupling Reduction in MIMO Antenna Applications," Progress In Electromagnetics Research Letters, Vol. 92, 39-45, 2020.
doi:10.2528/PIERL19102101
References

1. Morse, J., "Airgo pushing true MIMO technology," RCR Wireless News, Vol. 25, No. 37, 3, 2006.

2. Fritz, E. and H. J. Aguilar, "Mutual coupling reduction of two 2×1 triangular-patch antenna array using a single neutralization line for MIMO-application," Electromagnetics, 2018, dol: 10.13164/re.

3. Naderi, M., F. B. Zarrabi, F. S. Jafari, and S. Ebrahimi, "Fractal EBG structure for shielding and reducing the mutual coupling in microstrip patch antenna array," AEU --- International Journal of Electronics and Communications, Vol. 93, 261-267, 2018.
doi:10.1016/j.aeue.2018.06.028

4. Cole, A. J., "Mutual coupling reduction of MIMO antenna for satellite services and radio altimeter applications," International Journal of Advanced Computer Science and Applications, Vol. 9, No. 4, 2018.

5. Zhao, L. and K. Wang, "The MIMO antenna array with mutual coupling reduction and cross-polarization suppression by defected ground structures," Radioengineering, Vol. 27, No. 4, 969-975, 2018.
doi:10.13164/re.2018.0969

6. Yang, U., J. Li, S. G. Zhou, et al. "A wide-angle E-plane scanning linear array antenna with wide beam elements," IEEE Antennas Wirel. Propag. Lett., 2923-2926, 2017.
doi:10.1109/LAWP.2017.2752713

7. Mojtaba, K. K. and R. H. Hamid, "Wide scan phased array patch antenna with mutual coupling reduction," IET Microw. Antennas Propag., Vol. 12, 1932-1938, 2018.

8. Chi, Y. C., M. Senior, X. Fang, and D. Murch, "Mutual coupling reduction of rotationally symmetric multiport antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5013-5021, 2018.
doi:10.1109/TAP.2018.2854301

9. Wang, Z. Y. and L. Y. Zhu, "A meta-surface antenna array decoupling method for mutual coupling reduction in a MIMO antenna system," Scientific Reports, Vol. 8, No. 1, 2018, dol: 10.1038.
doi:10.1038/s41598-018-23392-5

10. Qamar, Z., U. Naeem, S. A. Khan, M. Chongcheawchamnan, and M. F. Shafifique, "Mutual coupling reduction for high performance densely packed patch antenna arrays on finite substrate," IEEE Trans. Antennas Propag., Vol. 64, No. 5, 1653-1660, May 2016.
doi:10.1109/TAP.2016.2535540

11. Ghosh, J., D. Mitra, and S. Das, "Mutual coupling reduction of slot antenna array by controlling surface wave propagation," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 1352-1357, 2019.
doi:10.1109/TAP.2018.2883524

12. Babashah, H., H. R. Hassani, and S. Mohammad-Ali-Nezhad, "A compact UWB printed monopole MIMO antenna with mutual coupling reduction," Progress In Electromagnetics Research C, Vol. 91, 55-67, 2019.
doi:10.2528/PIERC19010905

13. Xu, K. D., S. Wei, and A. Li, "Wideband patch antenna using multiple parasitic patches and its array application with mutual coupling reduction," IEEE Access, 2018.

14. Tang, M. C., et al., "Mutual coupling reduction using meta structures for wide band, dual-polarized, and high density patch arrays," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 3986-3998, Aug. 2017.
doi:10.1109/TAP.2017.2710214

15. Henridass, A., K. Aswathy, et al. "Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 277-280, 2014.

16. Mohsin, I., M. Karlsson, and O. Owais, "Design and implementation of a UWB six-port correlator for 6–9 GHz frequency band," Microwave and Optical Technology Letters, Vol. 55, No. 1, 190-193, Jan. 2013.
doi:10.1002/mop.27235

17. Wang, C. H. and Y. K. Chang, "Dual-band dual-polarized antenna array with flat-top and sharp cutoff radiation patterns for 2G/3G/LTE cellular bands," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 5907-5917, 2018.
doi:10.1109/TAP.2018.2866596

18. Khanjari, S. P., S. Jarchi, and M. Mohammad-Taheri, "Compact and wideband planar loop antenna with microstrip to parallel strip balun feed using metamaterials," AEU --- International Journal of Electronics and Communications, Vol. 111, 152883, 2019.
doi:10.1016/j.aeue.2019.152883

19. Andujar, A. and J. Anguera, "MIMO multiband antenna system combining resonant and nonresonant elements," Microwave and Optical Technology Letters, Vol. 56, No. 5, 1076-1084, 2014.
doi:10.1002/mop.28282

20. El Ouahabi, M., A. Zakriti, M. Essaaidi, A. Dkiouak, and E. Hanae, "A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications," Progress In Electromagnetics Research C, Vol. 93, 93-101, 2019.
doi:10.2528/PIERC19032601

21. Design Notes "Return loss, reflection coefficient and VSWR," High Frequency Electronics, Apr. 2008.