Vol. 90
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-05
BI-Functional Antenna Coating for Cloaking and Directivity Enhancement Made of Isotropic Materials
By
Progress In Electromagnetics Research M, Vol. 90, 9-18, 2020
Abstract
In this paper, using quasi-conformal mapping, a bi-functional coating layer is designed with the intention of both cloaking and directivity enhancement of an omnidirectional antenna. For TM external waves coming from a certain direction, the proposed coating layer conceals the inner objects. In addition to the cloaking performance, the designed coating layer plays the role of a metamaterial-based lens that dramatically enhances the directivity level of inner omnidirectional loop-family antennas. To reach this goal, a proper coordinate transformation is elaborately utilized to transform the cylindrical wavefronts radiated from the antenna into semi-pure plane waves. With appropriate simplifications, the proposed coating layer turns into an isotropic meta-device, which is more suitable to be fabricated. To prove the feasibility of the implementation, an SRR-meander line meta-atom is designed to locally realize the required permittivity and permeability distribution of the bi-functional layer. Full-wave simulations are performed via COMSOL finite element solver to validate the cloaking effect and directivity enhancement of the proposed coating layer, at the same time.
Citation
Mohammad Hosein Fakheri, Ali Abdolali, Zohreh Moradinia, Homayoon Oraizi, and Ali Keivaan, "BI-Functional Antenna Coating for Cloaking and Directivity Enhancement Made of Isotropic Materials," Progress In Electromagnetics Research M, Vol. 90, 9-18, 2020.
doi:10.2528/PIERM19101504
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Progress in Optics, Vol. 53, 69-152, Elsevier, 2009.

3. Dolin, L. S., "To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling," Izv. Vyssh. Uchebn. Zaved. Radiofizika, Vol. 4, No. 5, 964-967, 1961.

4. Nicolet, A., F. Zolla, and S. Guenneau, "Modelling of twisted optical waveguides with edge elements," The European Physical Journal Applied Physics, Vol. 28, No. 2, 153-157, 2004.
doi:10.1051/epjap:2004189

5. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-fundamentals and Applications, Vol. 6, No. 1, 87-95, 2008.

6. Roberts, D. A., M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Applied Physics Letters, Vol. 93, No. 25, 251111, 2008.
doi:10.1063/1.3055604

7. Kwon, D. H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New Journal of Physics, Vol. 10, No. 11, 115023, 2008.
doi:10.1088/1367-2630/10/11/115023

8. Barati, H., M. H. Fakheri, and A. Abdolali, "Experimental demonstration of metamaterial-assisted antenna beam deflection through folded transformation optics," Journal of Optics, Vol. 20, No. 8, 085101, 2018.
doi:10.1088/2040-8986/aacdc1

9. Sedeh, H. B., M. H. Fakheri, and A. Abdolali, "Advanced synthesis of meta-antenna radiation pattern enabled by transformation optics," Journal of Optics, Vol. 21, No. 4, 045108, 2019.
doi:10.1088/2040-8986/ab0f8c

10. Chen, H., B. I. Wu, B., Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Physical Review Letters, Vol. 99, No. 6, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903

11. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: perfect but sensitive to tiny perturbations," Physical Review Letters, Vol. 99, No. 11, 113903, 2007.
doi:10.1103/PhysRevLett.99.113903

12. Yan, M., Z. Ruan, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Physical Review Letters, Vol. 99, No. 23, 233901, 2007.
doi:10.1103/PhysRevLett.99.233901

13. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physical Review Letters, Vol. 101, No. 20, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

14. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, No. 5976, 337-339, 2010.
doi:10.1126/science.1186351

15. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nature Communications, Vol. 1, 21, 2010.
doi:10.1038/ncomms1023

16. Fakheri, M. H., H. Barati, and A. Abdolali, "Carpet cloak design for rough surfaces," Chinese Physics Letters, Vol. 34, No. 8, 084101, 2017.
doi:10.1088/0256-307X/34/8/084101

17. Xi, S., H. Chen, B. I. Wu, and J. A. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 131-133, 2009.
doi:10.1109/LMWC.2009.2013677

18. Jiang, W. X., H. F. Ma, Q. Cheng, and T. J. Cui, "A class of line-transformed cloaks with easily realizable constitutive parameters," Journal of Applied Physics, Vol. 107, No. 3, 034911, 2010.
doi:10.1063/1.3294651

19. Ma, Y., Y. Liu, L. Lan, T. Wu, W. Jiang, C. K. Ong, and S. He, "First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping," Scientific Reports, Vol. 3, 2182, 2013.
doi:10.1038/srep02182

20. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nature Materials, Vol. 12, No. 1, 25, 2013.
doi:10.1038/nmat3476

21. Keivaan, A., M. H. Fakheri, A. Abdolali, and H. Oraizi, "Design of coating materials for cloaking and directivity enhancement of cylindrical antennas using transformation optics," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3122-3125, 2017.
doi:10.1109/LAWP.2017.2764064

22. Chen, P. Y. and A. Alu, "Mantle cloaking using thin patterned metasurfaces," Physical Review B, Vol. 84, No. 20, 205110, 2011.
doi:10.1103/PhysRevB.84.205110

23. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

24. Rouhi, K., H. Rajabalipanah, and A. Abdolali, "Multi-bit graphene-based bias-encoded metasurfaces for real-time terahertz wavefront shaping: From controllable orbital angular momentum generation toward arbitrary beam tailoring," Carbon, Vol. 149, 125-138, 2019.
doi:10.1016/j.carbon.2019.04.034

25. Yuan, Y., K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, "Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region," Photonics Research, Vol. 7, No. 1, 80-88, 2019.
doi:10.1364/PRJ.7.000080

26. Zhang, K., Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, "High-efficiency metalenses with switchable functionalities in microwave region," ACS Applied Materials and Interfaces, Vol. 11, No. 31, 28423-28430, 2019.
doi:10.1021/acsami.9b07102

27. Monti, A., J. C. Soric, A. Alù, A. Toscano, and F. Bilotti, "Anisotropic mantle cloaks for TM and TE scattering reduction," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1775-1788, 2015.
doi:10.1109/TAP.2015.2396532

28. Qin, F. F., Z. Z. Liu, Q. Zhang, H. Zhang, and J. J. Xiao, "Mantle cloaks based on the frequency selective metasurfaces designed by bayesian optimization," Scientific Reports, Vol. 8, No. 1, 14033, 2018.
doi:10.1038/s41598-018-32167-x

29. Kwon, D. H., "Lossless tensor surface electromagnetic cloaking for large objects in free space," Physical Review B, Vol. 98, No. 12, 125137, 2018.
doi:10.1103/PhysRevB.98.125137

30. Monti, A., J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, and F. Bilotti, "Mantle cloaking for co-site radio-frequency antennas," Applied Physics Letters, Vol. 108, No. 11, 113502, 2016.
doi:10.1063/1.4944042

31. Moreno, G., A. B. Yakovlev, H. M. Bernety, D. H. Werner, H. Xin, A. Monti, and A. Alu, "Wideband elliptical metasurface cloaks in printed antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3512-3525, 2018.
doi:10.1109/TAP.2018.2829809

32. Tang, W., C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, "Discrete coordinate transformation for designing all-dielectric flat antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3795-3804, 2010.
doi:10.1109/TAP.2010.2078475

33. Tang, W., Y. Hao, and R. Mittra, "Design of a carpet cloak to conceal an antenna located underneath," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4444-4449, 2012.
doi:10.1109/TAP.2012.2207058

34. Ma, H., S. Qu, Z. Xu, and J. Wang, "Numerical method for designing approximate cloaks with arbitrary shapes," Physical Review E, Vol. 78, No. 3, 036608, 2008.
doi:10.1103/PhysRevE.78.036608

35. Hu, J., X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation," Optics Express, Vol. 17, No. 3, 1308-1320, 2009.
doi:10.1364/OE.17.001308

36. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation," Applied Physics Letters, Vol. 92, No. 26, 261903, 2008.
doi:10.1063/1.2953447

37. Wu, Q., Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. Tang, Y. Hao, and D. H. Werner, "Transformation optics inspired multibeam lens antennas for broadband directive radiation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5910-5922, 2013.
doi:10.1109/TAP.2013.2282905

38. Zhang, K., X. Ding, D.Wo, F. Meng, and Q.Wu, "Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics," Applied Physics Letters, Vol. 108, No. 5, 053508, 2016.
doi:10.1063/1.4941545

39. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Communications, Vol. 1, 124, 2010.
doi:10.1038/ncomms1126

40. García-Meca, C., A. Martínez, and U. Leonhardt, "Engineering antenna radiation patterns via quasi-conformal mappings," Optics Express, Vol. 19, No. 24, 23743-23750, 2011.
doi:10.1364/OE.19.023743

41. Thompson, J. F., B. K. Soni, and N. P. Weatherill (eds.), Handbook of Grid Generation, CRC Press, 1998.
doi:10.1201/9781420050349

42. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 2016.

43. Jiang, Z. H., M. D. Gregory, and D. H. Werner, "Broadband high directivity multibeam emission through transformation optics-enabled metamaterial lenses," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5063-5074, 2012.
doi:10.1109/TAP.2012.2207685

44. Jiang, Z. H., J. A. Bossard, X. Wang, and D. H. Werner, "Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm," Journal of Applied Physics, Vol. 109, No. 1, 013515, 2011.
doi:10.1063/1.3530849