Vol. 88
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-26
Compact Directional Coupled-Line Coupler with Independent Power Division Ratios at Dual Bands
By
Progress In Electromagnetics Research Letters, Vol. 88, 121-128, 2020
Abstract
This paper presents the first coupled-line coupler that provides independent power division ratios at dual bands. In contrast with previous dual-band coupled-line couplers, the power division ratios k2(f2) and k2(f2) at each band (f1 and f2) can be independently controlled in order to satisfy the requirements of various communication protocols at different bands. Moreover, it has a compact size due to the usage of coupled lines rather than transmission lines. Explicit design equations and design guide of the coupler are provided. In this letter, one prototype of the proposed coupler is simulated, fabricated, and measured. It provides power division ratios k2(f1)=4 dB at f1=1 GHz and k2(f2)=8 dB at f2=2.4 GHz. The measured result agrees well with the simulation.
Citation
Siyue Zhou, Xiaochuan Shen, Yongle Wu, and Yuan'an Liu, "Compact Directional Coupled-Line Coupler with Independent Power Division Ratios at Dual Bands," Progress In Electromagnetics Research Letters, Vol. 88, 121-128, 2020.
doi:10.2528/PIERL19101202
References

1. Levy, R. and L. F. Lind, "Synthesis of symmetrical branch-guide directional couplers," IEEE Trans. Microw. Theory Techn., Vol. 16, No. 2, 80-89, Feb. 1968.
doi:10.1109/TMTT.1968.1126612

2. Zhang, H. and K. J. Chen, "A stub tapped branch-line coupler for dual-band operations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 106-108, Feb. 2007.
doi:10.1109/LMWC.2006.890330

3. Maktoomi, M. A., M. S. Hashmi, and F. M. Ghannouchi, "Systematic design technique for dualband branch-line coupler using T- and Pi-networks and their application in novel wideband-ratio crossover," IEEE Trans. Compon. Packag. Technol., Vol. 6, No. 5, 784-795, May 2016.

4. Chi, P. and K. Ho, "Design of dual-band coupler with arbitrary power division ratios and phase differences," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 12, 2965-2974, Dec. 2014.
doi:10.1109/TMTT.2014.2364218

5. Cheng, Y., L. Wang, J. Wu, and Y. Fan, "Directional coupler with good restraint outside the passband and its frequency agile application," Progress In Electromagnetics Research, Vol. 135, 759-771, 2013.
doi:10.2528/PIER12121009

6. Gai, C., Y. Jiao, and Y. Zhao, "Compact dual-band branch-line coupler with dual transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 5, 325-327, May 2016.
doi:10.1109/LMWC.2016.2549099

7. Wu, Y., S. Y. Zheng, S. Leung, Y. Liu, and Q. Xue, "An analytical design method for a novel dual-band unequal coupler with four arbitrary trminated resistances," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5509-5516, Oct. 2014.

8. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth banch line couplerwith filtering characteristic using coupled port feeding," Progress In Electromagnetics Research, Vol. 118, 17-35, 2011.
doi:10.2528/PIER11041401

9. Chaudhary, G. and Y. Jeong, "Arbitrary power division ratio rat-race coupler with negative group delay characteristics," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 8, 565-567, Aug. 2016.
doi:10.1109/LMWC.2016.2585561

10. Ahn, H. and M. M. Tentzeris, "Arbitrary power-division branch-line hybrids for high-performance, wideband, and selective harmonic suppressions from 2f0," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 3, 978-987, Mar. 2019.
doi:10.1109/TMTT.2019.2892444

11. Yeung, L. K., "A compact dual-band 90 coupler with coupled-line sections," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 9, 2227-2232, Sep. 2011.
doi:10.1109/TMTT.2011.2160199

12. Wang, X., W. Yin, and K. Wu, "A dual-band coupled-line coupler with an arbitrary coupling coefficient," IEEE Trans. Microw. Theory Techn., Vol. 60, No. 4, 945-951, Apr. 2012.
doi:10.1109/TMTT.2012.2185949

13. Chang, C., K. Chin, and Y. Chiang, "Dual-band coupled-line couplers with wide separation between bands," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 8, Aug. 2017.
doi:10.1109/TMTT.2017.2693153

14. Corrales, E., A. Baldomero, and P. Paco, "A dual-band 180-degree hybrid coupler based on coupledline sections," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 211-213, Apr. 2015.
doi:10.1109/LMWC.2015.2400922

15. Chang, C., K. Chin, and Y. Zheng, "Design of dual-band −3 dB couplers with a wide range of dual-band frequency ratios," Electron. Lett., Vol. 52, No. 14, 1231-1233, Jul. 2016.
doi:10.1049/el.2016.1340

16. Wu, Y., J. Shen, Y. Liu, S. Leung, and Q. Xue, "Miniaturized arbitrary phase-difference couplers for arbitrary coupling coefficients," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 6, 2317-2324, Jun. 2013.
doi:10.1109/TMTT.2013.2259501

17. Reshma, S. and M. K. Mandal, "Miniaturization of a 90◦ hybrid coupler with improved bandwidth performance," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 11, 891-893, Nov. 2016.
doi:10.1109/LMWC.2016.2614977