Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-08
Design of a Compact 4-Way Power Divider Using 1/64Th Mode Elliptically Curved SIW Resonators
By
Progress In Electromagnetics Research Letters, Vol. 89, 21-28, 2020
Abstract
A novel compact 4-way power divider is presented here, which consists of 1/64th mode elliptically curved substrate integrated waveguide (SIW) resonators and radial transmission lines. A direct coaxial fed circular patch acting as the radial transmission line is connected with four elliptically curved 1/64th mode SIW resonators, and these resonators are then connected to output terminals. An equivalent circuit model is developed to understand its behavior. It is designed to operate at 3.6 GHz covering the frequencies assigned for 5G in sub-6 GHz band. Conventional PCB techniques are used to fabricate the prototype. The measured bandwidth is 2.2 GHz, ranging from 2.5 GHz to 4.7 GHz, for which the return loss is less than -10 dB. Also, the transmission coefficient between input and each output for the above-mentioned frequency band is -6.4±0.5 dB. It has a very compact footprint of 0.32λg2, which is at least 40% smaller than various SIW based state of the art power dividers.
Citation
Muquaddar Ali, Kamalesh Kumar Sharma, and Rajendra Prasad Yadav, "Design of a Compact 4-Way Power Divider Using 1/64Th Mode Elliptically Curved SIW Resonators," Progress In Electromagnetics Research Letters, Vol. 89, 21-28, 2020.
doi:10.2528/PIERL19101103
References

1. Shao, C., Y. Li, and J. X. Chen, "Compact dual-band microstrip filtering power divider using T-junction structure and quarter-wavelength SIR," Electron. Lett., Vol. 53, No. 6, 434-436, 2017.
doi:10.1049/el.2017.0182

2. Luo, M., X. Xu, X. H. Tang, et al. "A compact balanced-to-balanced filtering gysel power divider using λg/2 resonators and short-stub loaded resonator," Microw. Wirel. Compon. Lett., Vol. 27, No. 7, 645-647, 2017.
doi:10.1109/LMWC.2017.2711926

3. Shi, J., X. Wu, Z. N. Chen, et al. "A compact differential filtering quasi-Yagi antenna with high frequency selectivity and low polarization levels," Antennas Wirel. Propag. Lett., Vol. 14, No. 16, 1573-1576, 2015.
doi:10.1109/LAWP.2015.2413054

4. Feng, W. J., Y. Zhao, W. Q. Che, et al. "Single-ended-to-balanced filtering power dividers with wideband common-mode suppressio," Trans. Microw. Theory Tech., Vol. 66, No. 12, 5531-5542, 2018.
doi:10.1109/TMTT.2018.2867195

5. Li, S., X. Wang, J. Wang, and L. Ge, "Design of compact single-ended-to-balanced filtering power divider with wideband common-mode suppression," Electronics Letters, Vol. 55, No. 17, 947-949, 2019.
doi:10.1049/el.2019.1919

6. Cheng, Y., Substrate Integrated Antennas and Arrays, CRC Press, Boca Raton, 2015.

7. Wang, Y., et al. "Half Mode Substrate Integrated Waveguide (HMSIW) bandpass filter," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 4, 265-267, Apr. 2007.
doi:10.1109/LMWC.2007.892958

8. Zou, X., C. M. Tong, and D. W. Yu, "Y-junction power divider based on substrate integrated waveguide," IET Electron. Lett.,, Vol. 47, No. 25, 1375-1376, Dec. 2011.
doi:10.1049/el.2011.2953

9. Ali, M., K. K. Sharma, and R. P. Yadav, "Design of compact dual band quarter mode SIW cavity backed slot antenna," 2017 International Conference on Inventive Computing and Informatics (ICICI), 888-890, Coimbatore, 2017.

10. Zhang, R., J. Zhou, Z. Yu, and B. Yang, "A low phase noise feedback oscillator based on SIW bandpass response power divider," IEEE Microw.Wireless Compon. Lett., Vol. 28, No. 2, 153-155, Feb. 2018.
doi:10.1109/LMWC.2018.2791569

11. Wang, X., X. Zhu, L. Tian, P. Liu, W. Hong, and A. Zhu, "Design and experiment of filtering power divider based on shielded HMSIW/QMSIW technology for 5G wireless applications," IEEE Access, Vol. 7, 72411-72419, 2019.
doi:10.1109/ACCESS.2019.2920150

12. Moznebi, A., K. Afrooz, M. Danaeian, and P. Mousavi, "Four-way filtering power divider using SIW and eighth-mode SIW cavities with ultrawide out-of-band rejection," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 9, 586-588, Sept. 2019.
doi:10.1109/LMWC.2019.2931115

13. Song, K., Y. Fan, and Y. Zhang, "Eight-way substrate integrated waveguide power divider with low insertion loss," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 6, 1473-1477, Jun. 2008.
doi:10.1109/TMTT.2008.923897

14. Song, K. and Q. Xue, "Planar probe coaxial-waveguide power combiner/divider," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2761-2767, Nov. 2009.
doi:10.1109/TMTT.2009.2032483

15. Khan, A. A. and M. K. Mandal, "Miniaturized Substrate Integrated Waveguide (SIW) power dividers," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 11, 888-890, Nov. 2016.
doi:10.1109/LMWC.2016.2615005

16. Marcuvitz, N., Waveguide Handbook, McGraw-Hill, New York, 1951.

17. Edwards, T. C. and M. B. Steer, Foundations of Interconnect and Microstrip Design, 3rd edition, Wiley Press, 2001.

18. Pozar, D. M., Microwave Engineering, 3rd edition, Wiley, New York, NY, USA, 2005.

19. Song, K., S. Guo, and Y. Fan, "Four-way chained quasi-planar slotted-HMSIW power divider," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 2, 117-119, Feb. 2018.
doi:10.1109/LMWC.2017.2781134

20. Song, K., F. Xia, Y. Zhou, S. Guo, and Y. Fan, "Microstrip/Slotline-coupling substrate integrated waveguide power divider with high output isolation," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 95-97, Feb. 2019.
doi:10.1109/LMWC.2018.2888943

21. Yang, M., J. Wang, X. Wang, and W. Wu, "Design of wideband four-way filtering power divider based on SIW loaded square patch resonator," Electronics Letters, Vol. 55, No. 7, 389-391, 2019.
doi:10.1049/el.2018.8058

22. Jin, H., G. Q. Luo, W. Wang, W. Che, and K. Chin, "Integration design of millimeter-wave filtering patch antenna array with SIW four-way anti-phase filtering power divider," IEEE Access, Vol. 7, 49804-49812, 2019.
doi:10.1109/ACCESS.2019.2909771