Vol. 88
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-01
A Sub-Nyquist Sampling Digital Receiver System Based on Array Compression
By
Progress In Electromagnetics Research Letters, Vol. 88, 21-28, 2020
Abstract
In order to obtain the carrier frequency (CF) and direction-of-arrival (DOA) estimation, a uniform linear array (ULA)-based modulated wideband converter (MWC) discrete compressed sampling (CS) digital receiver system is proposed. It can achieve sub-Nyquist sampling, save the storage space and specially obtain the CF and DOA estimation by processing the CS data directly. However, the existing method for this system needs more branches to get better performance. In this paper, a compressed uniform linear array (CULA)-based MWC discrete CS digital receiver system is proposed. First, a compression matrix is used to reduce the number of branches behind the antennas. Then, the MWC discrete CS structure is used to reduce the data volume. Finally, the multiple signal classification (MUSIC) algorithm is used to jointly estimate the CF and DOA by processing the CS data directly. The simulation results validate the effectiveness of the proposed system and the proposed method for the joint CF and DOA estimation.
Citation
Tao Chen, Xutian Han, and Yongzhi Yu, "A Sub-Nyquist Sampling Digital Receiver System Based on Array Compression," Progress In Electromagnetics Research Letters, Vol. 88, 21-28, 2020.
doi:10.2528/PIERL19101002
References

1. Hamdaoui, B., B. Khalfi, and M. Guizani, "Compressed wideband spectrum sensing: Concept, challenges, and enablers," IEEE Communications Magazine, Vol. 56, No. 4, 136-141, 2018.
doi:10.1109/MCOM.2018.1700719

2. Qiu, Z. Y., P. Wang, and J. Zhu, "A parameter estimation algorithm for LFM/BPSK hybrid modulated signal intercepted by Nyquist folding receiver," EURASIP Journal on Advances in Signal Processing, Vol. 2016, No. 1, 90-90, 2016.
doi:10.1186/s13634-016-0387-2

3. Zhang, M., M. Diao, L. P. Gao, et al. "Neural networks for radar waveform recognition," Symmetry, Vol. 9, No. 5, 75-75, 2017.
doi:10.3390/sym9050075

4. Pinto, R. G. D. C. P. and R. Merched, "A compressed sensing approach to block-iterative equalizers," IEEE Transactions on Signal Processing, Vol. 66, No. 4, 1007-1022, 2018.
doi:10.1109/TSP.2017.2781648

5. Shahbazi, N., A. Abbasfar, and M. Jabbarian-Jahromi, "Efficient two-dimensional compressive sensing in mimo radar," EURASIP Journal on Advances in Signal Processing, Vol. 2017, No. 1, 23-23, 2017.
doi:10.1186/s13634-017-0448-1

6. Wen, X., G. Kuang, J. Hu, R. Zhan, and J. Zhang, "Forward-looking imaging of scanning phased array radar based on the compressed sensing," Progress In Electromagnetics Research, Vol. 143, 575-604, 2013.
doi:10.2528/PIER13101804

7. Mishali, M. and Y. C. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE Journal of Selected Topics in Signal Processing, Vol. 2016, No. 1, 375-391, 2010.
doi:10.1109/JSTSP.2010.2042414

8. Liu, W. S., Z. T. Huang, X.Wang, et al. "Design of a single channel modulated wideband converter for wideband spectrum sensing: Theory, architecture and hardware implementation," Sensors, Vol. 17, No. 5, 1035-1035, 2017.
doi:10.3390/s17051035

9. Lv, W. H., H. L. Wang, and S. X. Mu, "Spectrum sensing using co-prime array based modulated wideband converter," Sensors, Vol. 17, No. 5, 1052-1052, 2017.
doi:10.3390/s17051052

10. Yang, E. P., X. Yan, and K. Y. Qin, "Modulated wideband converter with run length limited sequences," IEICE Electronics Express, Vol. 13, No. 17, 20160670-20160670, 2016.
doi:10.1587/elex.13.20160670

11. Chen, T., L. Z. Liu, and L. M. Guo, "Wideband signal detection based on MWC discrete compressed sampling structure," Transactions of Nanjing University of Aeronautics and Astronautics, Vol. 34, No. 2, 105-114, 2017.

12. Chen, T., S. C. Wang, and L. M. Guo, "Recognition and parameter estimation of wideband LFM signal based on MWC discrete compressive sampling structure," Journal of Harbin Engineering University, Vol. 39, No. 8, 1415-1412, 2018.

13. Ioushua, S. S., O. Yair, D. Cohen, et al. "CaSCADE: Compressed carrier and DOA estimation," IEEE Transactions on Signal Processing, Vol. 65, No. 10, 2645-2658, 2017.
doi:10.1109/TSP.2017.2664054

14. Cui, C., W. Wu, and W. Q. Wang, "Carrier frequency and DOA estimation of sub-nyquist sampling multi-band sensor signals," IEEE Sensors Journal, Vol. 17, No. 22, 7470-7478, 2017.
doi:10.1109/JSEN.2017.2756861

15. Chen, T., L. Z. Liu, and D. P. Pang, "A ULA-based MWC discrete compressed sampling structure for carrier frequency and AOA estimation," IEEE Access, No. 5, 14154-14164, 2017.
doi:10.1109/ACCESS.2017.2730223

16. Chen, T., L. Z. Liu, and L. M. Guo, "Joint carrier frequency and DOA estimation using a modified ULA based MWC discrete compressed sampling receiver," IET Radar, Sonar and Navigation, Vol. 12, No. 8, 873-881, 2018.
doi:10.1049/iet-rsn.2017.0436

17. Guo, M. R., Y. D. Zhang, and T. Chen, "DOA estimation using compressed sparse array," IEEE Transactions on Signal Processing, Vol. 66, No. 15, 4133-4166, 2018.
doi:10.1109/TSP.2018.2847645

18. Pakrooh, P., A. Pezeshki, L. Scharf, et al. "Analysis of fisher information and the Cram´er-Rao bound for nonlinear parameter estimation after random compression," IEEE Transactions on Signal Processing, Vol. 63, No. 23, 6423-6428, 2015.
doi:10.1109/TSP.2015.2464183

19. Morabito, A. F., A. R. Lagana, and T. Isernia, "On the optimal synthesis of ring symmetric shaped patterns by means of uniformly spaced planar arrays," Progress In Electromagnetics Research B, Vol. 20, 33-48, 2010.
doi:10.2528/PIERB10011206

20. Si, W. J., P. J. Zhao, Z. Y. Qu, et al. "Real-valued DOA estimation for a mixture of uncorrelated and coherent sources via unitary transformation," Digital Signal Processing, Vol. 58, No. 2016, 102-114, 2016.
doi:10.1016/j.dsp.2016.07.024

21. Jiang, J. J., F. J. Duan, and J. Chen, "Three-dimensional localization algorithm for mixed nearfield and far-field sources based on ESPRIT and MUSIC method," Progress In Electromagnetics Research, Vol. 136, 435-456, 2013.
doi:10.2528/PIER12121208

22. Yildirim, A., "Method for estimating the central frequency of phase-coded radar signals," IET Signal Processing, Vol. 10, No. 9, 1073-1081, 2016.
doi:10.1049/iet-spr.2016.0237