Vol. 88
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-07
A Simple Numerical Solution Method for TM Scattering by Conducting Cylinders Partially Buried in a Dielectric Half-Space
By
Progress In Electromagnetics Research Letters, Vol. 88, 51-57, 2020
Abstract
The scattering of a transverse magnetic plane wave by a conducting cylinder partially buried in a dielectric half-space is solved by an aperture method. A system of coupled integral equations for the current induced on the cylinder and the scattered electric field at the dielectric interface are formulated from field equivalence principles. The scattered tangential electric field at interface is negligible at some distance from the cylinder location. Hence, for a sufficiently wide interface truncation, the coupled integral equations can be easily solved numerically by the Method of Moments. Data for the cylinder current, the scattered electric field at interface and the far-zone field are shown for cases of interest.
Citation
Cengiz Ozzaim, "A Simple Numerical Solution Method for TM Scattering by Conducting Cylinders Partially Buried in a Dielectric Half-Space," Progress In Electromagnetics Research Letters, Vol. 88, 51-57, 2020.
doi:10.2528/PIERL19092605
References

1. Xu, X.-B. and C. Butler, "Scattering of TM excitation by coupled and partially buried cylinders at the interface between two media," IEEE Trans. Antennas Propag., Vol. 35, No. 5, 529-538, May 1987.
doi:10.1109/TAP.1987.1144140

2. Rao, T. C. and R. Barakat, "Plane-wave scattering by a conducting cylinder partially buried in a ground plane. 1. TM case," J. Opt. Soc. Amer. A, Vol. 6, No. 9, 1270-1280, Sep. 1989.
doi:10.1364/JOSAA.6.001270

3. Marx, E., "Scattering by an arbitrary cylinder at a plane interface: Broadside incidence," IEEE Trans. Antennas Propag., Vol. 37, No. 5, 619-628, May 1989.
doi:10.1109/8.24190

4. Leviatan, Y. and Y. Meyouhas, "Analysis of electromagnetic scattering from buried cylinders using a multifilament current model," Radio Sci., Vol. 25, No. 6, 1231-1244, Nov. 1990.
doi:10.1029/RS025i006p01231

5. Ling, R. T. and P. Y. Ufimtsev, "Scattering of electromagnetic waves by a metallic object partially immersed in a semi-infinite dielectric medium," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 223-233, Feb. 2001.
doi:10.1109/8.914284

6. Simsek, E., J. Liu, and Q. H. Liu, "A spectral integral method and hybrid SIM/FEM for layered media," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 11, 3878-3884, Nov. 2006.
doi:10.1109/TMTT.2006.883647

7. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. II. Implementation and results for contiguous half-spaces," IEEE Trans. Antennas Propag., Vol. 38, No. 3, 345-352, Mar. 1990.
doi:10.1109/8.52241

8. Chen, Y. P., W. C. Chew, and L. Jiang, "A new Green’s function formulation for modeling homogeneous objects in layered medium," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4766-4776, Oct. 2012.
doi:10.1109/TAP.2012.2207332

9. Luo, W., Z. Nie, and Y. P. Chen, "Efficient higher-order analysis of electromagnetic scattering by objects above, below, or straddling a half-space," IEEE Antennas Wireless Propag. Lett., Vol. 15, 332-335, 2016.
doi:10.1109/LAWP.2015.2443874

10. Qi, X., Z. P. Nie, and X. F. Que, "An efficient method for analysis of EM scattering from objects straddling the interface of a half-space," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 12, 2014-2018, Dec. 2016.
doi:10.1109/LGRS.2016.2621134

11. Kizilay, A. and U. Saynak, "Scattering from a conducting cylinder partially buried in a dielectric half space by a decomposition method," MIKON, 2016.

12. Ozzaim, C., "Plane wave scattering by a conducting cylinder located near an interface between two dielectric half-spaces: a perturbation method," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2754-2758, May 2017.
doi:10.1109/TAP.2017.2669720

13. Ozzaim, C., "A perturbation method for scattering by a dielectric cylinder buried in a half-space," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5662-5665, Oct. 2018.
doi:10.1109/TAP.2018.2860040

14. Ozzaim, C., "A MoM solution for TM scattering by dielectric cylinders above an infinite flat surface," Journal of Modern Optics, Vol. 60, No. 15, 1550-1557, Aug. 2019.
doi:10.1080/09500340.2019.1647303