Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-05
Ultra-Wideband Mitigation of Differential to Common Mode Conversion for Bended Differential Lines by Periodic Interdigital Structure
By
Progress In Electromagnetics Research Letters, Vol. 89, 7-12, 2020
Abstract
In this paper, a periodic interdigital structure for wideband mitigation of differential-to-common mode conversion at the bend discontinuity of differential lines is proposed. A hybrid inductance and capacitance compensation property is exhibited to suppress the common-mode noise of asymmetric transmission lines. An equivalent circuit model is given to explain the working principle of the presented periodic interdigital structure for differential pairs. In comparison with the traditional methods, steep and wideband suppression performances are both observed with the proposed design. Moreover, no additional area is required at the bend discontinuity for compensation. From the measured result, the differential-to-common mode conversion of the differential signals can be mitigated from DC to 10 GHz with a rejection level of -20 dB. The measurements agree well with the simulation predictions.
Citation
Hao-Ran Zhu, Fan Li, and Yufa Sun, "Ultra-Wideband Mitigation of Differential to Common Mode Conversion for Bended Differential Lines by Periodic Interdigital Structure," Progress In Electromagnetics Research Letters, Vol. 89, 7-12, 2020.
doi:10.2528/PIERL19092301
References

1. Fornberg, P. E., M. Kanda, C. Lasek, M. Piket-May, and S. H. Stephen, "The impact of a nonideal return path on differential signal integrity," IEEE Trans. Electromagn. Compat., Vol. 44, No. 1, 11-15, Feb. 2002.
doi:10.1109/15.990705

2. Guo, W.-D., G.-H. Shiue, C.-M. Lin, and R.-B. Wu, "Comparisons between serpentine and flat spiral delay lines on transient reflection/transmission waveforms and eye diagrams," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1379-1387, Apr. 2006.
doi:10.1109/TMTT.2002.871913

3. Tsai, C.-H. and T.-L. Wu, "A broadband and miniaturized common-mode filter for gigahertz differential signals based on negative permittivity metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 1, 195-202, Jan. 2010.
doi:10.1109/TMTT.2009.2036413

4. Wu, L.-S., J.-F. Mao, and W.-Y. Yin, "Slow-wave structure to suppress diffetential-to-common model conversion for bend discontinuity of differential signaling," Proc. IEEE Elect. Design Adv. Packag. Syst. Symp., Hangzhou, China, Dec. 2011.

5. Lin, D.-B., "Signal integrity of bent differential transmission lines," Electron. Lett., Vol. 40, No. 19, 1191-1192, Sep. 2004.
doi:10.1049/el:20045322

6. Chang, C.-H., R.-Y. Fang, and C.-L. Wang, "Bended differential transmission line using compensation inductance for common-mode noise suppression," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 2, No. 9, 1518-1525, Sep. 2012.
doi:10.1109/TCPMT.2012.2192439

7. Shiue, G.-H., W.-D. Guo, C.-M. Lin, and R.-B. Wu, "Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines," IEEE Trans. Adv. Packag., Vol. 29, No. 3, 560-569, 2006.
doi:10.1109/TADVP.2006.875413

8. Ranade, S. R., R. K. Shevgaonkar, A. Sidhique, and P. H. Rao, "Mitigation of common mode noise in bent differential transmission line using curved PBG unit cell," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 347-352, 2018.
doi:10.1002/mop.30976

9. Zhu, H.-R., J.-J. Li, and J.-F. Mao, "Ultra-wideband suppression of SSN using localized topology with CSRRs and embedded capacitance in high-speed circuits," IEEE Trans. on Microw. Theory and Tech., Vol. 61, No. 2, 764-772, 2013.
doi:10.1109/TMTT.2012.2231695

10. Duffy, A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S.Woolfson, "Feature selective salidation (FSV) for validation of computational electromagnetics (CEM). Part I — The FSV method," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 449-459, 2006.
doi:10.1109/TEMC.2006.879358

11. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II — Assessment of FSV performance," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 460-467, 2006.
doi:10.1109/TEMC.2006.879360