Vol. 88
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-09
Polarization Difference Smoothing in Bistatic MIMO Radar
By
Progress In Electromagnetics Research Letters, Vol. 88, 67-74, 2020
Abstract
This paper investigates the joint direction of departure (DOD) and the direction of arrival (DOA) estimation of coherent targets in bistatic multiple-input multiple-output (MIMO) radar under the presence of spatially correlated noise. Based on electromagnetic vector sensors at both transmitter and receiver of MIMO radar, a preprocessing method, namely polarization difference smoothing, is proposed to remove the coherence between targets and to suppress the spatially correlated noise. Then DOD and DOA are estimated using the ESPRIT method. Further, this paper develops a simple approach for pair-matching between the estimated DODs and DOAs. Simulation results are compared with the receive polarization smoothing and transmit-receive polarization smoothing methods available in literature. Results show that the proposed approach improves the performance significantly.
Citation
Karthick Subramaniam, Palanisamy Ponnusamy, and Srinivasarao Chintagunta, "Polarization Difference Smoothing in Bistatic MIMO Radar," Progress In Electromagnetics Research Letters, Vol. 88, 67-74, 2020.
doi:10.2528/PIERL19091608
References

1. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Process. Mag., Vol. 24, No. 5, 106-114, 2007.
doi:10.1109/MSP.2007.904812

2. Duofang, C., C. Baixiao, and Q. Guodong, "Angle estimation using ESPRIT in MIMO radar," Electron. Lett., Vol. 44, No. 12, 770-771, 2008.
doi:10.1049/el:20080276

3. Jinli, C., G. Hong, and S. Weimin, "Angle estimation using ESPRIT without pairing in MIMO radar," Electronics Letters, Vol. 44, No. 24, 1422-1423, 2008.
doi:10.1049/el:20089089

4. Li, J., X. Zhang, R. Cao, and M. Zhou, "Reduced-dimension MUSIC for angle and array gain-phase error estimation in bistatic MIMO radar," IEEE Commun. Lett., Vol. 17, No. 3, 443-446, 2013.
doi:10.1109/LCOMM.2013.012313.122113

5. Zhang, X., X. Gao, G. Feng, and D. Xu, "Blind joint DOA and DOD estimation and identifiability results for MIMO radar with different transmit/receive array manifolds," Progress In Electromagnetics Research B, Vol. 18, 101-119, 2009.

6. Chen, H. W., D. Yang, H.-Q. Wang, X. Li, and Z. Zhuang, "Direction finding for bistatic MIMO radar using EM maximum likelihood algorithm," Progress In Electromagnetics Research, Vol. 141, 99-116, 2013.
doi:10.2528/PIER13050102

7. Pillai, S. U. and B. H. Kwon, "Forward/backward spatial smoothing techniques for coherent signal identification," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, No. 1, 8-15, 1989.
doi:10.1109/29.17496

8. Ma, X., X. Dong, and Y. Xie, "An improved spatial differencing method for DOA estimation with the coexistence of uncorrelated and coherent signals," IEEE Sensors J., Vol. 16, No. 10, 3719-3723, 2016.
doi:10.1109/JSEN.2016.2532929

9. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Trans. Signal Process., Vol. 42, No. 2, 376-398, 1994.
doi:10.1109/78.275610

10. Gao, Y.-F. and Q. Wan, "A rank-(L, L, 1) BCD based AOA-polarization joint estimation algorithm for electromagnetic vector sensor array," Progress In Electromagnetics Research M, Vol. 56, 25-32, 2017.
doi:10.2528/PIERM17020802

11. Zheng, G. and B.-X. Chen, "Optimal polarization design for direction finding using mimo electromagnetic vector-sensor array," Progress In Electromagnetics Research C, Vol. 42, 205-212, 2013.
doi:10.2528/PIERC13062904

12. Chintagunta, S. and P. Palanisamy, "DOD and DOA estimation using the spatial smoothing in MIMO radar with the EmV sensors," Multidim Syst Sign Process, Vol. 29, No. 4, 1241-1253, 2018.
doi:10.1007/s11045-017-0500-1

13. Chintagunta, S. and P. Ponnusamy, "Spatial and polarization angle estimation of mixed-targets in MIMO radar," Progress In Electromagnetics Research M, Vol. 82, 49-59, 2019.
doi:10.2528/PIERM19041705

14. Ponnusamy, P., K. Subramaniam, and S. Chintagunta, "Computationally efficient method for joint DOD and DOA estimation of coherent targets in MIMO radar," Signal Processing, Vol. 165, 262-267, 2019.
doi:10.1016/j.sigpro.2019.07.015

15. Rahamim, D., J. Tabrikian, and R. Shavit, "Source localization using vector sensor array in a multipath environment," IEEE Trans. Signal Process., Vol. 52, No. 11, 3096-3103, 2004.
doi:10.1109/TSP.2004.836456

16. Zheng, G. and B. Wu, "Polarisation smoothing for coherent source direction finding with multipleinput and multiple-output electromagnetic vector sensor array," IET Signal Processing, Vol. 10, No. 8, 873-879, 2016.
doi:10.1049/iet-spr.2015.0535

17. Chintagunta, S. and P. Ponnusamy, "Integrated polarisation and diversity smoothing algorithm for DOD and DOA estimation of coherent targets," IET Signal Processing, Vol. 12, No. 4, 447-453, 2018.
doi:10.1049/iet-spr.2017.0276

18. Gu, C., J. He, X. Zhu, and Z. Liu, "Efficient 2D DOA estimation of coherent signals in spatially correlated noise using electromagnetic vector sensors," Multidim Syst Sign Process, Vol. 21, No. 3, 239-254, 2010.
doi:10.1007/s11045-010-0100-9

19. Hong, S., X. Wan, and H. Ke, "Spatial difference smoothing for coherent sources location in MIMO radar," Signal Processing, Vol. 109, 69-83, 2015.
doi:10.1016/j.sigpro.2014.09.037

20. Wen, F., X. Xiong, J. Su, and Z. Zhang, "Angle estimation for bistatic MIMO radar in the presence of spatial colored noise," Signal Processing, Vol. 134, 261-267, 2017.
doi:10.1016/j.sigpro.2016.12.017

21. Jiang, H., J. Zhang, and K. M. Wong, "Joint DOD and DOA estimation for bistatic MIMO radar in unknown correlated noise," IEEE Trans. Veh. Technol., Vol. 64, No. 11, 5113-5125, 2015.
doi:10.1109/TVT.2014.2384495

22. Jin, M., G. Liao, and J. Li, "Joint DOD and DOA estimation for bistatic MIMO radar," Signal Processing, Vol. 89, No. 2, 244-251, 2009.
doi:10.1016/j.sigpro.2008.08.003

23. He, J., S. Jiang, J. Wang, and Z. Liu, "Polarization difference smoothing for direction finding of coherent signals," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 1, 469-480, 2010.
doi:10.1109/TAES.2010.5417176