Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-25
Deminiaturized Mode Control Rectangular Dielectric Resonator Antenna
By
Progress In Electromagnetics Research M, Vol. 86, 173-182, 2019
Abstract
A modified feed line Wideband Circularly Polarized Dielectric Resonator Antenna (CPDRA) operating at 24 GHz is proposed in this paper. Deminiaturisation of design is achieved by operating antenna at higher order mode TE117. The antenna structure consists of a rectangular DRA with three rectangular slots. One at the centre and other two inclined orthogonally with respect to centre slot. The bottom surface of substrate contains the modified feed structure in which two stubs of the same dimensions are connected orthogonally to main microstrip line to provide a phase difference of an odd multiple of λ/2 for circular polarization. DRA with excitation through modified aperture coupled feed structure provides the simulated and measured impedance bandwidths of 16.28% (22-25.9 GHz) and 15.06% (22.1-25.7) GHz. The antenna provides the simulated and measured gains of 8.4 dB and 7.9 dB. The antenna is deminiaturised by 61% by operating antenna at higher order mode. The designed antenna has potential for millimeter wave and 5G applications.
Citation
Richa Gupta, and Arti Vaish, "Deminiaturized Mode Control Rectangular Dielectric Resonator Antenna," Progress In Electromagnetics Research M, Vol. 86, 173-182, 2019.
doi:10.2528/PIERM19091204
References

1. Wong, K.-L., Compact and Broadband Microstrip Antennas, Vol. 168, John Wiley & Sons, 2004.

2. Liu, Z. D., P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1451-1458, 1997.
doi:10.1109/8.633849

3. Yaduvanshi, R. S. and H. Parthasarathy, Rectangular Dielectric Resonator Antennas, Springer, 2016.
doi:10.1007/978-81-322-2500-3

4. Waterhouse, R., "Small microstrip patch antenna," Electronics Letters, Vol. 31, No. 8, 604-605, 1995.
doi:10.1049/el:19950426

5. Wong, K.-L. and S.-C. Pan, "Compact triangular microstrip antenna," Electronics Letters, Vol. 33, No. 6, 433-434, 1997.
doi:10.1049/el:19970332

6. Chair, R., C.-L. Mak, K.-F. Lee, K.-M. Luk, and A. A. Kishk, "Miniature wide-band half U-slot and half E-shaped patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2645-2652, 2005.
doi:10.1109/TAP.2005.851852

7. Kishk, A. A., K. F. Lee, W. C. Mok, and K.-M. Luk, "A wide-band small size microstrip antenna proximately coupled to a hook shape probe," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 59-65, 2004.
doi:10.1109/TAP.2003.820979

8. Wong, K.-L., C.-L. Tang, and H.-T. Chen, "A compact meandered circular microstrip antenna with a shorting pin," Microwave and Optical Technology Letters, Vol. 15, No. 3, 147-149, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<147::AID-MOP8>3.0.CO;2-G

9. Lu, J. H. and K. L. Wong, "Slot-loaded meandered rectangular microstrip antenna with compact dual-frequency operation," Electronics Letters, Vol. 34, No. 11, 1048-1049, 1998.
doi:10.1049/el:19980737

10. Chair, R., K. M. Luk, and K. F. Lee, "Small dual patch antenna," Electronics Letters, Vol. 35, No. 10, 762-764, 1999.
doi:10.1049/el:19990530

11. Mongia, R. K. and A. Ittipiboon, "Theoretical and experimental investigations on rectangular dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, 1348-1356, 1997.
doi:10.1109/8.623123

12. Sharawi, M. S., S. K. Podilchak, M. T. Hussain, and Y. M. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 287-293, 2017.
doi:10.1049/iet-map.2016.0457

13. Mrnka, M., M. Cupal, Z. Raida, A. Pietrikova, and D. Kocur, "Millimetre-wave dielectric resonator antenna array based on directive LTCC elements," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 662-667, 2018.
doi:10.1049/iet-map.2017.0492

14. Haddad, A., M. Aoutoul, K. Rais, and M. Essaaidi, "Rectangular dielectric resonator antenna (RDRA) for anti-collision short range radar (SRR) application," 2016 International Conference on Electrical and Information Technologies (ICEIT), 237-239, IEEE, 2016.
doi:10.1109/EITech.2016.7519597

15. Parchin, N. O., M. Shen, and G. F. Pedersen, "Mm-wave dielectric resonator antenna (DRA) with wide bandwidth for the future wireless networks," International Conference on Microwave, Radar and Wireless Communications (MIKON), 1-4, 2016.

16. Parchin, N. O., M. Shen, and G. F. Pedersen, "Wideband Fabry-Pérot resonator for 28 GHz applications," 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 1-4, IEEE, 2016.

17. Elboushi, A., O. M. Haraz, and A. Sebak, "Circularly-polarized SIW slot antenna for MMW applications," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 648-649, IEEE, 2013.
doi:10.1109/APS.2013.6710984

18. Li, R., Q. Zhang, Y. Kuang, X. Chen, Z. Xiao, and J. Zhang, "Design of a miniaturized antenna based on split ring resonators for 5G wireless communications," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-4, IEEE, 2019.

19. Gharsallah, H., L. Osman, and L. Latrach, "Circularly polarized two-layer conical DRA based on metamaterial," Microwave and Optical Technology Letters, Vol. 59, No. 8, 1913-1919, 2017.
doi:10.1002/mop.30650

20. Zhu, C., T. Li, K. Li, Z.-J. Su, X. Wang, H.-Q. Zhai, L. Li, and C.-H. Liang, "Electrically small metamaterial-inspired tri-band antenna with meta-mode," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1738-1741, 2015.
doi:10.1109/LAWP.2015.2421356

21. Sharawi, M. S., S. K. Podilchak, M. T. Hussain, and Y. M. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 287-293, 2017.
doi:10.1049/iet-map.2016.0457

22. Akbari, M., S. Gupta, M. Farahani, A. R. Sebak, and T. A. Denidni, "Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5542-5546, 2016.
doi:10.1109/TAP.2016.2623655

23. Fakhte, S., H. Oraizi, and L. Matekovits, "Gain improvement of rectangular dielectric resonator antenna by engraving grooves on its side walls," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2167-2170, 2017.
doi:10.1109/LAWP.2017.2702584

24. Mrnka, M. and Z. Raida, "Gain improvement of higher order mode dielectric resonator antenna by thin air gap," 2016 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), 1-3, IEEE, 2016.

25. Mrnka, M. and Z. Raida, "Enhanced-gain dielectric resonator antenna based on the combination of higher-order modes," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 710-713, 2015.

26. Mrnka, M. and Z. Raida, "Linearly polarized high gain rectangular dielectric resonator antenna," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, 2016.