Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-09
An Ultra-Wideband Polarization Conversion Meta-Surface and Its Application in RCS Reduction
By
Progress In Electromagnetics Research Letters, Vol. 89, 29-36, 2020
Abstract
In this paper, a novel meta-surface with polarization conversion characteristic in an ultra-wide band is proposed. Based on the principle of the reflected wave cancelation, the proposed meta-surface is distributed as a checkerboard to obtain an ultra-wideband radar cross section (RCS) reduction, resulting from the out-of-phase difference in normal incidence. The relationship between the polarization conversion ratio (PCR) and RCS reduction is investigated and verified by the simulation. Finally, a sample is fabricated and measured in an anechoic chamber. Compared to the metal board with same size, a 5 dB RCS reduction is achieved ranging from 3.7 GHz to 15.9 GHz, which indicates a fractional bandwidth of 124.5%. Moreover, the size of the unit cell is only 0.125λ0×0.125λ0×0.059λ0, where λ0 is corresponding to the lowest frequency, namely 3.7 GHz, indicating the merits of miniaturization and low profile. Experiment results are in good agreement with the simulated ones, which demonstrates the validity of the proposed strategy.
Citation
Jian Yong Yin, Hou-Jun Sun, and Lei Zhang, "An Ultra-Wideband Polarization Conversion Meta-Surface and Its Application in RCS Reduction," Progress In Electromagnetics Research Letters, Vol. 89, 29-36, 2020.
doi:10.2528/PIERL19091003
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, SciTech Publishing, Raleigh, 2004.

2. Han, Z. J., W. Song, and X. Q. Sheng, "Gain enhancement and RCS reduction for patch antenna by using polarization dependent EBG surface," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1631-1634, 2017.

3. Li, W. Q., X. Y. Cao, J. Gao, et al. "A novel low RCS microstrip antenna," 3th Asia-Pacific Conference on Antennas and Propagation, 495-498, Harbin, China, August 2014.

4. Dikmen, C. M., S. Cimen, and G. Cakir, "Planar octagonal-shaped UWB antenna with reduced radar cross section," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2946-2953, 2014.

5. Su, J. X., C. Y. Kong, Z. R. Li, et al. "Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface," Electron. Lett., Vol. 53, No. 16, 1088-1090, 2017.

6. Zhang, J. J., J. H. Wang, M. E. Chen, et al. "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1048-1051, 2012.

7. Shi, Y., Z. K. Meng, W. Y. Wei, et al. "Characteristic mode cancellation method and its application for antenna RCS reduction," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 9, 1784-1788, 2019.

8. Shi, Y., X. F. Zhang, Z. K. Meng, et al. "Design of low RCS antenna using antenna array," IEEE Trans. Antennas Propag., Vol. 67, No. 10, 6484-6493, 2019.

9. Kundu, D., S. Baghel, A. Mohan, et al. "Design and analysis of printed lossy capacitive surfacebased ultrawideband low profile absorber," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3533-3538, 2019.

10. Zaki, B., Z. H. Firouzeh, Z. N. Abolgasem, et al. "Wideband RCS reduction using three different implementations of AMC structures," IET Microw. Antennas Propag., Vol. 13, No. 5, 533-540, 2019.

11. Song, X. Y., Z. H. Yan, and T. L. Zhang, "Broadband AMC surface for radar cross section reduction," ICMMT, 2018.

12. Hong, T., S. Wang, Z. Y. Liu, et al. "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 167-171, 2019.

13. Sun, S. Y., W. Jiang, X. Q. Li, et al. "Ultrawideband high-efficiency 2.5-dimensional polarization conversion metasurface and its application in RCS reduction of antenna," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 5, 881-885, 2019.

14. Chen, W. K., J. F. Shi, Z. Y. Niu, et al. "Broadband polarization conversion metasurface for radar cross section reduction," ICMMT, 2018.

15. Wang, J. X., S. Shang, D.W. Song, et al. "RCS reduction of a microstrip patch based on broadband PRRS," ISAPE, 2018.

16. Zou, S. X., J. L. Wei, and X. Man, "Wideband RCS reduction of patch antenna using PRRS," Electron. Lett., Vol. 53, No. 8, 522-524, 2017.

17. Long, M., W. Jiang, and S. X. Gong, "Wideband RCS reduction using polarisation conversion metasurface and partially reflecting surface," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2534-2537, 2017.

18. Liu, Y., K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarisation conversion metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2016.

19. Jia, Y. T., Y. Liu, Y. J. Guo, et al. "Broadband polarisation rotation reflective surfaces and their applications to RCS reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 179-188, 2016.

20. Deng, Z. H., F. W. Wang, Y. H. Ren, et al. "A novel wideband low-RCS reflector by hexagon polarization rotation surfaces," IEE Access, Vol. 7, 131527-131533, 2019.

21. Liu, Z. S., Y. Liu, and S. X. Gong, "Gain enhanced circularly polarized antenna with RCS reduction based on metasurface," IEEE Access, Vol. 6, 46856-46862, 2018.