Vol. 87
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-29
A Novel Frequency Reconfigurable HF Broadband Whip Antenna Based on GOA Optimization
By
Progress In Electromagnetics Research M, Vol. 87, 11-21, 2019
Abstract
Aiming at the problems of low gain, low efficiency at lower frequency and warping in pattern at higher frequency of 10-meter high frequency (HF) whip antenna, the whip antenna is loaded and matched with the network in different bands using Grasshopper Optimization Algorithms (GOA) and antenna reconfiguration technology, so a new frequency reconfigurable broadband whip antenna is designed in this paper. According to the electrical characteristics of 10-meter HF whip antenna, this paper divides short wave frequency into three bands and designs its radiation structure, loading, and matching network for each band of antenna, respectively. GOA is introduced into the research and design of antenna to optimize the component parameters of loading network and matching network. The results show that the antenna in lower frequency band can be improved at most, the maximum gain growth up to 5.8 dB (from -10.3 dB to -4.5 dB) and the maximum efficiency growth up to 8.5% (from 3% to 11.5%); the gain and efficiency in high frequency band are greatly improved too, and the phenomenon of warping in the pattern is effectively avoided.
Citation
Hengfeng Wang, Chao Liu, Huaning Wu, and Xu Xie, "A Novel Frequency Reconfigurable HF Broadband Whip Antenna Based on GOA Optimization," Progress In Electromagnetics Research M, Vol. 87, 11-21, 2019.
doi:10.2528/PIERM19091002
References

1. Mattioni, L. and G. Marrocco, "Design of a broadband HF antenna for multimode naval communications," IEEE Antennas & Wireless Propagation Letters, Vol. 4, No. 1, 179-182, 2005.
doi:10.1109/LAWP.2005.850796

2. Rodriguez, J. L., I. Garca-Tunon, J. M. Taboada, et al. "Broadband HF antenna matching network design using a real-coded genetic algorithm," IEEE Transactions on Antennas & Propagation, Vol. 55, No. 3, 611-618, 2007.
doi:10.1109/TAP.2007.891546

3. Marrocco, G. and L. Mattioni, "Naval structural antenna systems for broadband HF communications," IEEE Transactions on Antennas & Propagation, Vol. 54, No. 4, 1065-1073, 2006.
doi:10.1109/TAP.2006.872559

4. Jagannath, T., P. P. Kulkarni, and V. M. Tyagi, "HF broadband antenna design considerations on warships," International Conference on Electromagnetic Interference & Compatibility, 2002.

5. Liu, C., Q.-Z. Liu, Y.-J. Liang, et al. "Design of broadband shipboard whip-type antenna at high frequency band," Chinese Journal of Radio Science, Vol. 21, No. 6, 955-957, 2006.

6. Spall, J. C., Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, Vol. 65, John Wiley & Sons, 2005.

7. Dasgupta, D. and Z. Michalewicz, Evolutionary Algorithms in Engineering Applications, Springer, 1997.
doi:10.1007/978-3-662-03423-1

8. Yang, X.-S., Nature-inspired Metaheuristic Algorithms, Luniver Press, 2010.

9. Boussaıd, I., J. Lepagnot, and P. Siarry, "A survey on optimization metaheuristics," Inf. Sci., Vol. 237, 82-117, 2013.
doi:10.1016/j.ins.2013.02.041

10. Gogna, A. and A. Tayal, "Metaheuristics: Review and application," J. Exp. Theor. Artif. Intel., Vol. 25, 03-26, 2013.

11. Zhou, A., Q. Zhang, and G. Zhang, "A multiobjective evolutionary algorithm based on decomposition and probability model," 2012 IEEE Congress on Evolutionary Computation, 1-8, 2012.

12. Saremi, S., S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: Theory and application," Advances in Engineering Software, Vol. 105, 30-47, 2017.
doi:10.1016/j.advengsoft.2017.01.004

13. Mirjalili, S. Z., S. Mirjalili, S. Saremi, et al. "Grasshopper optimization algorithm for multiobjective optimization problems," Applied Intelligence, Vol. 3, 1-16, 2017.

14. Wang, H.-F., C. Liu, and H.-N. Wu, "HF wideband whip antenna optimization based on invasive weed optimization algorithm," Radio Engineering, Vol. 46, No. 11, 63-67, 2016.

15. Wang, H.-F., C. Liu, and H.-N. Wu, "Design of a frequency reconfigurable shortwave broadband Whip antenna," Journal of Naval Uniwersity of Engineering, Vol. 31, No. 01, 41-45, 2019.

16. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas & Propagation Magazine, Vol. 55, No. 1, 49-61, 2013.
doi:10.1109/MAP.2013.6474484

17. Bernhard, J. T., "Reconfigurable antennas," Synthesis Lectures on Antennas, Vol. 2, No. 1, 66 Pages, 2007.

18. Weedon, W. H., W. J. Payne, and G. M. Rebeiz, "MEMS-switched reconfigurable antennas," Antennas & Propagation Society International Symposium, Vol. 3, 2001.

19. Yang, S., C. Zhang, H. K. Pan, et al. "Frequency-reconfigurable antennas for multi-radio wireless platforms," Microwave Magazine IEEE, Vol. 10, No. 1, 66-83, 2009.
doi:10.1109/MMM.2008.930677