Vol. 87
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-29
Semicircle CSRR with Circular Slot Array Structures for High Level Mutual Coupling Reduction in MIMO Antenna
By
Progress In Electromagnetics Research M, Vol. 87, 23-32, 2019
Abstract
A single semicircle shape Complementary Split Ring Resonator (CSRR) is designed to enhance isolation by suppressing mutual coupling between MIMO antennas. Furthermore high level of mutual coupling by introducing circular slot in-between patch antennas on the substrate which creates additional coupling path between the patch antennas also opposes the some leakage signals coming back from the opposite coupling path after CSRR is etched from ground plane. The proposed patch antenna dimensions are chosen as 37.26 x 28.13 mm for operating at 2.51 GHz frequency, and the low-cost dielectric material, FR-4 (εr = 4.4), is chosen as the dielectric substrate with 1.6 mm height. The S parameters of proposed antenna prototype are characterized by using VNA. The measured return loss (S11) and isolation (S21) are -23.13 dB & -56.8 dB respectively. The results show that by introducing semicircle CSRR and circular slot, the structure provides a 33.2 dB improvement in mutual coupling for MIMO antenna. Hence, the proposed structure provides a better isolation between two antennas without affecting antenna performance.
Citation
Arunachalam Ambika, and Chandrapragasam Tharini, "Semicircle CSRR with Circular Slot Array Structures for High Level Mutual Coupling Reduction in MIMO Antenna," Progress In Electromagnetics Research M, Vol. 87, 23-32, 2019.
doi:10.2528/PIERM19091001
References

1. Sahandabadi, S. and S. V. A. Makki, "Mutual coupling reduction using complementary of SRR with wire MNG structure," Microwave Optical Technology Letters, 1-4, 2019.

2. Kumar, N. and U. K. Kommuri, "MIMO antenna H-plane isolation enhancement using UC-EBG structure and metalline strip for WLAN applications," Radio Engineering, Vol. 28, No. 2, 399-406, June 2019.

3. Panda, P. K. and D. Ghosh, "Isolation enhancement of patch antennas using metamaterial substrate," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017.

4. Malathi, C. J. and D. Thiripurasundari, "Review on isolation techniques in MIMO antenna," Indian Journal of Science and Technology, Vol. 9, No. 35[2], 2016.

5. Mori, K., K. Uchida, H. Arai, and (n.d.), "Active antenna using parasitic elements," IEEE Antennas and Propagation Society and International Symposium, Vol. 3, 1636-1639, 2002.

6. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Mutual coupling reduction using dumbbell defected ground structure for multiband microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 13, 29-40, 2010.
doi:10.2528/PIERL09102902

7. Su, S.-W., C.-T. Le, and F.-S. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications," IEEE Transitions on Antennas and Propagation, Vol. 60, No. 2, 2011.

8. Selvaraju, R. R., M. H. Jamaluddin, M. R. Kamaruddin, J. Nasir, and M. H. Dahri, "Enhance isolation and pattern error correction in a 5G beamforming linear array using CSRR," IEEE Access, Vol. 6, 65922-65934, 2018.
doi:10.1109/ACCESS.2018.2873062

9. Jiang, T., T. Jiao, and Y. Li, "Array enhance isolation using L-loading E-shape electromagnetic band gap structures," Hindawi Publishing Corporation International Journalof Antennas and Propagation, Vol. 2016, 13 July 2016.

10. Jiang, T., T. Jiao, and Y. Li, "A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures," ACES Journal, Vol. 33, No. 3, March 2018.

11. Li, Y. and X. Liu, "Enhance isolation of a MIMO antenna array using 3-D novel meta-material structures," Article in Applied Computational Electromagnetics Society Journal, August 2018.

12. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review, Vol. E71, 036617, 2005.