Vol. 89
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-01-22
Monitoring the Dielectric Properties and Propagation Conditions of Mortar for Modern Wireless Mobile Networks
By
Progress In Electromagnetics Research Letters, Vol. 89, 91-97, 2020
Abstract
Recently, modern wireless communication applications are extended to call high frequency bands including millimeter waves for 5G systems. Therefore, the propagation properties of such waves in different media have attracted many researchers. In this work, the results of the S-parameters measurements of mortar with four thicknesses are obtained using a nondestructive free space measurement technique for the frequency bands from 8 GHz up to 32 GHz. The obtained results of the dielectric properties and loss factors for the prepared mortar samples are realized. The variation in both the reflection and transmission coefficients and the dielectric properties with curing time conditions of mortar structure is examined. The dielectric properties of water are realized using the proposed method to subtract the effects of water contents from the prepared mortar samples. The effects of the sample thickness and relaxation frequency are considered. The obtained measurements are compared to the simulated results based on a full wave simulation software package of CSTMWS algorithms. Finally, excellent agreements are achieved between the simulated and measured results.
Citation
Mohammed A. Jawad, Mohammed Ahmed Elwi, Ethar Y. Salih, Taha Ahmed Elwi, and Zulkifly Abbas, "Monitoring the Dielectric Properties and Propagation Conditions of Mortar for Modern Wireless Mobile Networks," Progress In Electromagnetics Research Letters, Vol. 89, 91-97, 2020.
doi:10.2528/PIERL19090912
References

1. Elwi, T. A., "Metamaterial based a printed monopole antenna for sensing applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 7, September 2018.
doi:10.1002/mmce.21470

2. Lin, Z., X. Du, H. Chen, B. Ai, Z. Chen, and D. Wu, "Millimeter-wave propagation modeling and measurements for 5G mobile networks," IEEE Wireless Communications, Vol. 26, No. 1, 72-77, February 2019.
doi:10.1109/MWC.2019.1800035

3. ACI Committee 301-10 "Specification for structural concrete,", Reported by ACI Committee 301, 2010.

4. Bois, K. J., A. D. Benally, P. S. Nowak, and R. Zoughi, "Cure-state monitoring and w=c ratio determination of fresh Portland cement-based materials using near field microwave techniques," IEEE Trans. Instrum. Meas., Vol. 47, 628-637, June 1999.

5. Koymen, O. H., et al. "Indoor mmWave channel measurements: Comparative study of 2.9GHz and 29GHz," Proc. IEEE GLOBECOM, 1-6, December 2015.

6. Trabelsi, S., A. W. Kraszewski, and S. Nelson, "Nondestructive microwave characterization for determining the bulk density and moisture content of shelled corn," Meas. Sci. Technol., Vol. 9, 1548-1556, 1998.
doi:10.1088/0957-0233/9/9/026

7. Feng, W., et al. "When mmWave communications meet network densification: A scalable interference coordination perspective," IEEE JSAC, Vol. 35, No. 7, 1459-71, 2017.

8. Elwi, T. A. and Y. Alnaiemy, "Electromagnetic characterizations of cement using free space technique for the application of buried object detection," Diyala Journal for Pure Science, Vol. 11, No. 4, 1-10, July 2015.

9. Elwi, T. A., "Printed microwave metamaterial-antenna circuitries on nickel oxide polymerized palm fiber substrates," Nature Scientific Reports, Vol. 9, No. 2174, 1-14, January 2019.

10. Elwi, T. A., "On the percentage quantization of the moisture content in the iraqi petroleum productions using microwave sensing," Al-Ma’mon College Journal, No. 28, 262-277, December 2016.

11. Jamil, M., M. K. Hassan, H. M. A. Al-Mattarneh, et al. "Mater struct,", Vol. 46, 77, 2013, https://doi.org/10.1617/s11527-012-9886-2.

12., www.cst.com.

13. Elwi, T. A., A. J. Salim, A. N. Alkhafaji, J. K. Ali, and A. S. A. Jalal, "Complex constitutive characterizations of materials in the X-band using a non-destructive technique," Special Issue of the 8th International Advances in Applied Physics and Materials Science Congress (APMAS 2018), ACTA Physica Polonica A, Vol. 135, No. 4, 567-570, August 2019.

14. Elwi, T. A., "Printed microwave metamaterial-antenna circuitries on nickel oxide polymerized palm fiber substrates," Nature Scientific Reports, Vol. 9, No. 2174, 1-14, January 2019.

15. Elwi, T. A. and Y. Alnaiemy, "Electromagnetic characterizations of cement using free space technique for the application of buried object detection," Diyala Journal for Pure Science, Vol. 11, No. 4, 1-10, July 2015.

16. Goncalves, F. J. F., A. G. M. Pinto, R. C. Mesquita, E. J. Silva, and A. Brancaccio, "Freespace materials characterization by reflection and transmission measurements using frequency-byfrequency and multi-frequency algorithms," Electronics, Vol. 7, 260, 2018.
doi:10.3390/electronics7100260