Vol. 167
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-01-18
Shielding of an Imperfect Metallic Thin Circular Disk: Exact and Low-Frequency Analytical Solution
By
Progress In Electromagnetics Research, Vol. 167, 1-10, 2020
Abstract
The problem of evaluating the shielding effectiveness of a thin metallic circular disk with finite conductivity against an axially symmetric vertical magnetic dipole is addressed. First, the thin metallic disk is modeled through an appropriate boundary condition, and then, as for the perfectly conducting counterpart, the problem is reduced to a set of dual integral equations which are solved in an exact form through the application of the Galerkin method in the Hankel transform domain. A second-kind Fredholm infinite matrix-operator equation is obtained by selecting a suitable set of basis functions. A low-frequency solution is finally extracted in a closed form. Through a comparison with results obtained from a full-wave commercial software, it is shown that such a simple approximate solution is accurate up to the frequency where the surface-impedance model of the thin disk is valid.
Citation
Giampiero Lovat, Paolo Burghignoli, Rodolfo Araneo, Salvatore Celozzi, Amedeo Andreotti, Dario Assante, and Luigi Verolino, "Shielding of an Imperfect Metallic Thin Circular Disk: Exact and Low-Frequency Analytical Solution," Progress In Electromagnetics Research, Vol. 167, 1-10, 2020.
doi:10.2528/PIER19090908
References

1. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 7–8, 163, 1944.
doi:10.1103/PhysRev.66.163

2. Bouwkamp, C., "On the diffraction of electromagnetic waves by small circular disks and holes," Philips Research Reports, Vol. 5, 401-422, 1950.

3. Flammer, C., "The vector wave function solution of the diffraction of electromagnetic waves by circular disks and apertures. I. Oblate spheroidal vector wave functions," J. Appl. Phys., Vol. 24, No. 9, 1218-1223, 1953.
doi:10.1063/1.1721474

4. Ehrlich, M. J., S. Silver, and G. Held, "Studies of the diffraction of electromagnetic waves by circular apertures and complementary obstacles: The near-zone field," J. Appl. Phys., Vol. 26, No. 3, 336-345, 1955.
doi:10.1063/1.1721989

5. Millar, R., "The diffraction of an electromagnetic wave by a circular aperture," Proc. IEE-Part C: Monographs, Vol. 104, No. 5, 87-95, 1957.
doi:10.1049/pi-c.1957.0011

6. Eggimann, W., "Higher-order evaluation of electromagnetic diffraction by circular disks," IRE Trans. Microw. Theory Techn., Vol. 9, No. 5, 408-418, 1961.
doi:10.1109/TMTT.1961.1125362

7. Williams, W., "Electromagnetic diffraction by a circular disk," Proc. Cambridge Phil. Soc., Vol. 58, No. 4, 625-630, Cambridge University Press, 1962.
doi:10.1017/S0305004100040664

8. Marsland, D., C. Balanis, and S. Brumley, "Higher order diffractions from a circular disk," IEEE Trans. Antennas Propag., Vol. 35, No. 12, 1436-1444, 1987.
doi:10.1109/TAP.1987.1144034

9. Duan, D.-W., Y. Rahmat-Samii, and J. P. Mahon, "Scattering from a circular disk: A comparative study of PTD and GTD techniques," Proc. IEEE, Vol. 79, No. 10, 1472-1480, 1991.
doi:10.1109/5.104222

10. Nosich, A. I., "The method of analytical regularization in wave-scattering and eigenvalue problems: Foundations and review of solutions," IEEE Antennas Propag. Mag., Vol. 41, No. 3, 34-49, 1999.
doi:10.1109/74.775246

11. Bliznyuk, N. Y., A. I. Nosich, and A. N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axisymmetrically excited by an electric dipole," Microw. Opt. Techn. Lett., Vol. 25, No. 3, 211-216, 2000.
doi:10.1002/(SICI)1098-2760(20000505)25:3<211::AID-MOP15>3.0.CO;2-D

12. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetics Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

13. Balaban, M. V., R. Sauleau, T. M. Benson, and A. I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk," Progress In Electromagnetics Research B, Vol. 16, 107-126, 2009.
doi:10.2528/PIERB09050701

14. Hongo, K., A. D. U. Jafri, and Q. A. Naqvi, "Scattering of electromagnetic spherical wave by a perfectly conducting disk," Progress In Electromagnetics Research, Vol. 129, 315-343, 2012.
doi:10.2528/PIER11102805

15. Di Murro, F., M. Lucido, G. Panariello, and F. Schettino, "Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3610-3620, 2015.
doi:10.1109/TAP.2015.2438336

16. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Sci., Vol. 51, No. 8, 1421-1430, 2016.
doi:10.1002/2016RS006044

17. Lucido, M., G. Panariello, and F. Schettino, "Scattering by a zero-thickness PEC disk: A new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method," Radio Sci., Vol. 52, No. 1, 2-14, 2017.
doi:10.1002/2016RS006140

18. Lovat, G., P. Burghignoli, R. Araneo, S. Celozzi, A. Andreotti, D. Assante, and L. Verolino, "Shielding of a perfectly conducting Circular Disk: Exact and Static analytical solution," Progress In Electromagnetics Research C, Vol. 95, 167-182, 2019.
doi:10.2528/PIERC19052908

19. Roberts, A., "Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen," J. Opt. Soc. Am. A, Vol. 4, No. 10, 1970-1983, 1987.
doi:10.1364/JOSAA.4.001970

20. Lee, H. S. and H. J. Eom, "Electromagnetic scattering from a thick circular aperture," Microw. Opt. Techn. Lett., Vol. 36, No. 3, 228-231, 2003.
doi:10.1002/mop.10728

21. Balaban, M. V., O. V. Shapoval, and A. I. Nosich, "THz wave scattering by a graphene strip and a disk in the free space: Integral equation analysis and surface plasmon resonances," J. Opt., Vol. 15, No. 11, 114007, 2013.
doi:10.1088/2040-8978/15/11/114007

22. Chew, W. C., Waves and Fields in Inhomogenous Media, IEEE Press, Piscataway, NJ, 1999.
doi:10.1109/9780470547052

23. Bleszynski, E., M. K. Bleszynski, and T. Jaroszewicz, "Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets," IEEE Antennas Propag. Mag., Vol. 35, No. 6, 14-25, 1993.
doi:10.1109/74.248480

24. Burghignoli, P., G. Lovat, R. Araneo, and S. Celozzi, "Time-domain shielding of a thin conductive sheet in the presence of vertical dipoles," IEEE Trans. Electromagn. Compat., Vol. 60, No. 1, 157-165, Jan. 2018.
doi:10.1109/TEMC.2017.2702560

25. Farina, M. and T. Rozzi, "Numerical investigation of the field and current behavior near lossy edges," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 7, 1355-1358, 2001.
doi:10.1109/22.932260

26. Bliznyuk, N. Y. and A. I. Nosich, "Numerical analysis of a dielectric disk antenna," Telecommunications and Radio Engineering, Vol. 61, 273-278, 2004.

27. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Edition, Academic Press, Burlington, MA, 2014.

28. Rdzanek, W. P., "Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials," J. Acoust. Soc. Am., Vol. 143, No. 3, 1259-1282, 2018.
doi:10.1121/1.5025159

29. Smith, D. R., Singular-Perturbation Theory: An Introduction with Applications, Cambridge University Press, 1985.

30. Eason, G., B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. R. Soc. Lond. A, Vol. 247, No. 935, 529-551, 1955.
doi:10.1098/rsta.1955.0005

31. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, Wiley-IEEE, Hoboken, 2008.
doi:10.1002/9780470268483

32. Moser, J. R., "Low-frequency low-impedance electromagnetic shielding," IEEE Trans. Electromagn. Compat., Vol. 30, No. 3, 202-210, 1988.
doi:10.1109/15.3298

33. Jin, J.-M., The Finite Element Method in Electromagnetics, Wiley-IEEE Press, 2014.

34. Araneo, R., G. Lovat, S. Celozzi, and P. Burghignoli, "ELF shielding of finite-size finite-thickness screens against magnetic fields," 2018 IEEE International Conference on EEEIC/I&CPS Europe), 1-5, IEEE, 2018.