Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-27
Computer-Aided Design of Superconducting Equilateral Triangular Patch on Anisotropic Substrates
By
Progress In Electromagnetics Research M, Vol. 86, 203.-211, 2019
Abstract
The effects of both anisotropy in the substrates and the superconducting films on the resonant frequencies and radiation patterns of an equilateral triangular patch are investigated theoretically. Our proposed method is based on the modified cavity model in conjunction with the electromagnetic knowledge. The validity of the proposed method is tested by comparing the computed results of the resonant characteristics with the experimental data. Results show effects of the superconducting patch thickness as well as the anisotropy in the substrate on resonant frequency and the radiation pattern of the triangular patch. The effects of the antenna parameters on the resonant frequencies and radiation patterns are also presented and discussed. At higher substrate thicknesses, numerical results indicate that the radiation pattern is drastically changed. The resonant frequency, on the other hand, decreases with high equivalent permittivity of the anisotropic substrate. The proposed method is very fast, simple, and compatible well with CAD.
Citation
Abdelkarim Gadda, Sami Bedra, Chahinez Agaba, Siham Benkouda, Randa Bedra, and Tarek Fortaki, "Computer-Aided Design of Superconducting Equilateral Triangular Patch on Anisotropic Substrates," Progress In Electromagnetics Research M, Vol. 86, 203.-211, 2019.
doi:10.2528/PIERM19090803
References

1. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedance-matching technique for high-temperature superconducting microstrip antennas," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
doi:10.2528/PIER07082502

2. Morrow, J. D., J. T. Williams, M. F. Davis, D. L. Licon, H. Rampersad, D. R. Jazdyk, X. Zhang, S. A. Long, and J. C. Wolfe, "Circularly polarized 20-GHz high-temperature superconducting microstrip antenna array," IEEE Transactions on Applied Superconductivity, Vol. 9, 4725-4732, 1999.
doi:10.1109/77.819344

3. Lancaster, M. J., H. Y. Wang, and J.-S. Hong, "Thin-film HTS planar antennas," IEEE Transactions on Applied Superconductivity, Vol. 8, 168-177, 1998.
doi:10.1109/77.740682

4. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials," Physica C: Superconductivity and Its Applications, Vol. 543, 1-7, 2017.
doi:10.1016/j.physc.2017.09.006

5. Biswas, M. and A. Mandal, "Design and development of an equilateral patch sensor for determination of permittivity of homogeneous dielectric medium," Microwave and Optical Technology Letters, Vol. 56, 1097-1104, 2014.
doi:10.1002/mop.28269

6. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient CAD model to analysis of high Tc superconducting circular microstrip antenna on anisotropic substrates," Advanced Electromagnetics, Vol. 6, 40-45, 2017.
doi:10.7716/aem.v6i2.446

7. Liu, J., S. Zheng, Y. Li, and Y. Long, "Broadband monopolar microstrip patch antenna with shorting vias and coupled ring," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 39-42, 2013.

8. Sun, C., "A design of compact ultrawideband circularly polarized microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, 6170-6175, 2019.
doi:10.1109/TAP.2019.2922759

9. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Analysis of HTS circular patch antennas including radome effects," International Journal of Microwave and Wireless Technologies, Vol. 10, 843-850, 2018.
doi:10.1017/S175907871800034X

10. Gnanamurugan, S. and P. Sivakumar, "Performance analysis of rectangular microstrip patch antenna for wireless application using FPGA," Microprocessors and Microsystems, Vol. 68, 11-16, 2019.
doi:10.1016/j.micpro.2019.04.006

11. Dam, M. and M. Biswas, "Investigation of a right-angled isosceles triangular patch antenna on composite and suspended substrates based on a CAD-oriented cavity model," IETE Journal of Research, Vol. 63, 248-259, 2017.
doi:10.1080/03772063.2016.1261050

12. Biswas, M. and M. Sen, "Design and development of rectangular patch antenna with superstrates for the application in portable wireless equipments and aircraft radome," Microwave and Optical Technology Letters, Vol. 56, 883-893, 2014.
doi:10.1002/mop.28197

13. Biswas, M. and A. Mandal, "Experimental and theoretical investigation of resonance and radiation characteristics of superstrate loaded rectangular patch antenna," Microwave and Optical Technology Letters, Vol. 57, 791-799, 2015.
doi:10.1002/mop.28961

14. Olaimat, M. M. and N. I. Dib, "A study of 15˚-75˚-90˚ angles triangular patch antenna," Progress In Electromagnetics Research Letters, Vol. 21, 1-9, 2011.
doi:10.2528/PIERL11010203

15. Benkouda, S., M. Amir, T. Fortaki, and A. Benghalia, "Dual-frequency behavior of stacked high Tc superconducting microstrip patches," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, 1350-1366, 2011.
doi:10.1007/s10762-011-9842-1

16. Joković, J. J., T. Z. Dimitrijević, and N. S. Dončov, "Computational analysis and validation of the cylindrical TLM approach on IMCP antennas," Wireless Personal Communications, Vol. 106, 1573-1589, 2019.
doi:10.1007/s11277-019-06230-3

17. Bedra, S., T. Fortaki, A. Messai, and R. Bedra, "Spectral domain analysis of resonant characteristics of high Tc superconducting rectangular microstrip patch printed on isotropic or uniaxial anisotropic substrates," Wireless Personal Communications, Vol. 86, 495-511, 2016.
doi:10.1007/s11277-015-2941-x

18. Gurel, C. S. and E. Yazgan, "Analysis of annular ring microstrip patch on uniaxial medium via Hankel transform domain immittance approach," Progress In Electromagnetics Research M, Vol. 11, 37-52, 2010.
doi:10.2528/PIERM09071404

19. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient full-wave analysis of inverted circular microstrip antenna," Microwave and Optical Technology Letters, Vol. 56, 2422-2425, 2014.
doi:10.1002/mop.28618

20. Biswas, M. and M. Dam, "Closed-form model to determine the co-axial probe reactance of an equilateral triangular patch antenna," International Journal of Microwave and Wireless Technologies, Vol. 10, 801-813, 2018.
doi:10.1017/S1759078718000661

21. Chung, D.-C., "HTS microstrip bipin antenna array for broadband satellite communication," IEEE Transactions on Applied Superconductivity, Vol. 13, 297-300, 2003.
doi:10.1109/TASC.2003.813714

22. Olaimat, M. M. and N. I. Dib, "Improved formulae for the resonant frequencies of triangular microstrip patch antennas," International Journal of Electronics, Vol. 98, 407-424, 2011.
doi:10.1080/00207217.2010.547811

23. Richard, M. A., K. B. Bhasin, and P. C. Claspy, "Superconducting microstrip antennas: An experimental comparison of two feeding methods," IEEE Transactions on Antennas and Propagation, Vol. 41, 967-974, 1993.
doi:10.1109/8.237630