1. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedance-matching technique for high-temperature superconducting microstrip antennas," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
doi:10.2528/PIER07082502
2. Morrow, J. D., J. T. Williams, M. F. Davis, D. L. Licon, H. Rampersad, D. R. Jazdyk, X. Zhang, S. A. Long, and J. C. Wolfe, "Circularly polarized 20-GHz high-temperature superconducting microstrip antenna array," IEEE Transactions on Applied Superconductivity, Vol. 9, 4725-4732, 1999.
doi:10.1109/77.819344
3. Lancaster, M. J., H. Y. Wang, and J.-S. Hong, "Thin-film HTS planar antennas," IEEE Transactions on Applied Superconductivity, Vol. 8, 168-177, 1998.
doi:10.1109/77.740682
4. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials," Physica C: Superconductivity and Its Applications, Vol. 543, 1-7, 2017.
doi:10.1016/j.physc.2017.09.006
5. Biswas, M. and A. Mandal, "Design and development of an equilateral patch sensor for determination of permittivity of homogeneous dielectric medium," Microwave and Optical Technology Letters, Vol. 56, 1097-1104, 2014.
doi:10.1002/mop.28269
6. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient CAD model to analysis of high Tc superconducting circular microstrip antenna on anisotropic substrates," Advanced Electromagnetics, Vol. 6, 40-45, 2017.
doi:10.7716/aem.v6i2.446
7. Liu, J., S. Zheng, Y. Li, and Y. Long, "Broadband monopolar microstrip patch antenna with shorting vias and coupled ring," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 39-42, 2013.
8. Sun, C., "A design of compact ultrawideband circularly polarized microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, 6170-6175, 2019.
doi:10.1109/TAP.2019.2922759
9. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Analysis of HTS circular patch antennas including radome effects," International Journal of Microwave and Wireless Technologies, Vol. 10, 843-850, 2018.
doi:10.1017/S175907871800034X
10. Gnanamurugan, S. and P. Sivakumar, "Performance analysis of rectangular microstrip patch antenna for wireless application using FPGA," Microprocessors and Microsystems, Vol. 68, 11-16, 2019.
doi:10.1016/j.micpro.2019.04.006
11. Dam, M. and M. Biswas, "Investigation of a right-angled isosceles triangular patch antenna on composite and suspended substrates based on a CAD-oriented cavity model," IETE Journal of Research, Vol. 63, 248-259, 2017.
doi:10.1080/03772063.2016.1261050
12. Biswas, M. and M. Sen, "Design and development of rectangular patch antenna with superstrates for the application in portable wireless equipments and aircraft radome," Microwave and Optical Technology Letters, Vol. 56, 883-893, 2014.
doi:10.1002/mop.28197
13. Biswas, M. and A. Mandal, "Experimental and theoretical investigation of resonance and radiation characteristics of superstrate loaded rectangular patch antenna," Microwave and Optical Technology Letters, Vol. 57, 791-799, 2015.
doi:10.1002/mop.28961
14. Olaimat, M. M. and N. I. Dib, "A study of 15˚-75˚-90˚ angles triangular patch antenna," Progress In Electromagnetics Research Letters, Vol. 21, 1-9, 2011.
doi:10.2528/PIERL11010203
15. Benkouda, S., M. Amir, T. Fortaki, and A. Benghalia, "Dual-frequency behavior of stacked high Tc superconducting microstrip patches," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, 1350-1366, 2011.
doi:10.1007/s10762-011-9842-1
16. Joković, J. J., T. Z. Dimitrijević, and N. S. Dončov, "Computational analysis and validation of the cylindrical TLM approach on IMCP antennas," Wireless Personal Communications, Vol. 106, 1573-1589, 2019.
doi:10.1007/s11277-019-06230-3
17. Bedra, S., T. Fortaki, A. Messai, and R. Bedra, "Spectral domain analysis of resonant characteristics of high Tc superconducting rectangular microstrip patch printed on isotropic or uniaxial anisotropic substrates," Wireless Personal Communications, Vol. 86, 495-511, 2016.
doi:10.1007/s11277-015-2941-x
18. Gurel, C. S. and E. Yazgan, "Analysis of annular ring microstrip patch on uniaxial medium via Hankel transform domain immittance approach," Progress In Electromagnetics Research M, Vol. 11, 37-52, 2010.
doi:10.2528/PIERM09071404
19. Bedra, S., R. Bedra, S. Benkouda, and T. Fortaki, "Efficient full-wave analysis of inverted circular microstrip antenna," Microwave and Optical Technology Letters, Vol. 56, 2422-2425, 2014.
doi:10.1002/mop.28618
20. Biswas, M. and M. Dam, "Closed-form model to determine the co-axial probe reactance of an equilateral triangular patch antenna," International Journal of Microwave and Wireless Technologies, Vol. 10, 801-813, 2018.
doi:10.1017/S1759078718000661
21. Chung, D.-C., "HTS microstrip bipin antenna array for broadband satellite communication," IEEE Transactions on Applied Superconductivity, Vol. 13, 297-300, 2003.
doi:10.1109/TASC.2003.813714
22. Olaimat, M. M. and N. I. Dib, "Improved formulae for the resonant frequencies of triangular microstrip patch antennas," International Journal of Electronics, Vol. 98, 407-424, 2011.
doi:10.1080/00207217.2010.547811
23. Richard, M. A., K. B. Bhasin, and P. C. Claspy, "Superconducting microstrip antennas: An experimental comparison of two feeding methods," IEEE Transactions on Antennas and Propagation, Vol. 41, 967-974, 1993.
doi:10.1109/8.237630