Vol. 88
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-04
Maxwell's Definition of Electric Polarization as Displacement
By
Progress In Electromagnetics Research M, Vol. 88, 65-71, 2020
Abstract
After reaffirming that the macroscopic dipolar electromagnetic equations, which today are commonly referred to as Maxwell's equations, are found in Maxwell's Treatise, we explain from his Treatise that Maxwell defined his displacement vector D as the electric polarization and did not introduce in his Treatise or papers the concept of electric polarization P or the associated electric-polarization volume and surface charge densities, -n.P and n.P, respectively. With this realization, we show that Maxwell's discussion of surface charge density between volume elements of dielectrics and between dielectrics and conductors becomes understandable and valid within the context of his definition of electric polarization as displacement D. Apparently, this identification of D with electric polarization in Maxwell's work has not been previously pointed out or documented except very briefly in [2].
Citation
Arthur D. Yaghjian, "Maxwell's Definition of Electric Polarization as Displacement," Progress In Electromagnetics Research M, Vol. 88, 65-71, 2020.
doi:10.2528/PIERM19090802
References

1. Maxwell, J. C., A Treatise on Electricity and Magnetism, 3rd Edition, Dover, New York, 1954.

2. Yaghjian, A. D., "Reflections on Maxwell’s Treatise," Progress In Electromagnetics Research, Vol. 149, 217-249, 2014.
doi:10.2528/PIER14092503

3. Maxwell, J. C., "On Faraday’s lines of force," Trans. Cambridge Phil. Soc., Vol. 10, 27-83, 1856.

4. Buchwald, J. Z., From Maxwell to Microphysics, University of Chicago Press, Chicago, 1985.

5. Sarkar, T. K., et al. History of Wireless, Wiley, Hoboken, NJ, 2006.
doi:10.1002/0471783021

6. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

7. Maxwell, J. C., "On physical lines of force, Part 2," Phil. Mag. and J. Sci., Vol. 21, 282-349, March 1861.

8. Yaghjian, A. D., "Maxwell’s derivation of the Lorentz force from Faraday’s law,", arXiv:1911.04605, November 2019.

9. Thomson, W., "A mathematical theory of magnetism," Phil. Trans. Roy. Soc. Lond., Vol. 141, 269-285, January 1851.

10. Faraday, M., Experimental Researches in Electricity, Dover, New York, 2004.

11. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Phil. Trans. Roy. Soc. Lond., Vol. 155, 459-512, 1865.

12. Larmor, J., "A dynamical theory of the electric and luminiferous medium — Part II. Theory of electrons," Phil. Trans. Roy. Soc. London (A), Vol. 186, 695-743, 1895.

13. Leathem, J. G., "On the theory of the magneto-optic phenomena of iron, nickel, and cobalt," Phil. Trans. Roy. Soc. London (A), Vol. 190, 89-127, 1897.

14. Lorentz, H. A., "The fundamental equations for electromagnetic phenomena in ponderable bodies deduced from the theory of electrons," Proc. Roy. Acad. Amsterdam, Vol. 5, 254-266, September 1902.

15. Hansen, T. B. and A. D. Yaghjian, Plane-Wave Theory of Time-domain Fields: Near-field Scanning Applications, IEEE/Wiley, New York, 1999.
doi:10.1109/9780470545522