1. An, Y., et al. "Building an omnidirectional 3D color laser ranging system througha novel calibration method," IEEE Transactions on Industrial Electronics, Vol. 66, 8821-8831, 2019.
doi:10.1109/TIE.2018.2890506
2. Shi, G., W. Wang, and F. Zhang, "Precision improvement of frequency-modulated continuouswavelaser ranging system with two auxiliary interferometers," Optics Communications, Vol. 411, 152-157, 2018.
doi:10.1016/j.optcom.2017.11.062
3. Andersone, I., "Probabilistic mapping with ultrasonic distance sensors," Procedia Computer Science, Vol. 104, 362-368, 2017.
doi:10.1016/j.procs.2017.01.146
4. Tan, W. L., M. S. Vohra, and S. H. Yeo, "Depth and horizontal distance of surface roughness improvement on vertical surface of 3D-printed material using ultrasonic cavitation machining process with abrasive particles," Key Engineering Materials, Vol. 748, 264-268, 2017.
doi:10.4028/www.scientific.net/KEM.748.264
5. Lai, Y., G.-Q. Liu, Z. Li, and Y. Lin, "Research on the method of seed water content measurement based on electromagnetic induction," Progress In Electromagnetics Research M, Vol. 74, 191-200, 2018.
doi:10.2528/PIERM18073002
6. Liu, X.-F., B.-Z. Wang, and S.-Q. Xiao, "Electromagnetic subsurface detection using subspace signal processing and half-space dyadic Green’s function," Progress In Electromagnetics Research, Vol. 98, 315-331, 2009.
doi:10.2528/PIER09092902
7. Von Brzeski, J. G. and V. von Brzeski, "Topological intensity shifts of electro-magnetic field in lobachevskian spaces. Olbers paradox solved, deep space communication, and the new electromagnetic method of gravitational wave detection," Progress In Electromagnetics Research, Vol. 43, 163-179, 2003.
doi:10.2528/PIER03032701
8. Qu, X., Y. Li, G. Fang, and H. Yin, "A portable frequency domain electromagnetic system for shallow metal targets detection," Progress In Electromagnetics Research M, Vol. 53, 167-175, 2017.
doi:10.2528/PIERM16111603
9. Huang, X., L. L. Tan, and Z. Chen, "Review and research progress on wireless power transfer technology," Transactions of China Electrotechnical Society, Vol. 28, 103-104, 2013.
10. Zhang, J. and Y. Cui, "Research on reliability of magnetic resonance coupling wireless charging device with series-parallel model," Electrical & Energy Management, Vol. 5, 98-106, 2018.
11. Mai, R. and Y. Li, "Wireless power transfer technology and its research progress in rail transportation," Journal of Southwest Jiaotong University, Vol. 51, 56-59, 2016.
12. Zhang, X., "Research on maximum transmission efficiency of resonance coupling wireless transmission in high-speed train system," Transactions of China Electrotechnical Society, Vol. 30, 2015.
13. Zhang, H., et al. "Cooperative precoding for wireless energy transfer and secure cognitive radio coexistence systems," IEEE Signal Processing Letters, Vol. 24, 540-544, 2017.
doi:10.1109/LSP.2017.2673871
14. Jiang, C., K.-T. Chau, W. Han, and W. Liu, "Development of multilayer rectangular coils for multiple-receiver multiple-frequency wireless power transfer," Progress In Electromagnetics Research, Vol. 163, 15-24, 2018.
doi:10.2528/PIER18060206
15. Kim, J., W.-S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
doi:10.2528/PIER13012118
16. Kim, S., J. S. Ho, and A. S. Y. Poon, "Non-coil, optimal sources for wireless powering of submillimeter implantable devices," Progress In Electromagnetics Research, Vol. 158, 99-108, 2017.
doi:10.2528/PIER16092301
17. Li, Z., S. Cheng, and Y. Qin, "Novel rotor position detection method of line back EMF for BLDCM," Electric Machines and Control, Vol. 14, 96-100, 2010.
18. Kim, C. W., F. P. S. Chin, and H. K. Garg, "Selection of frequency for Near Field Electromagnetic Ranging (NFER) based on its Cramer-Rao bound," IEEE Signal Processing Letters, Vol. 14, 1000-1003, 2007.
doi:10.1109/LSP.2007.903274
19. Wang, P., X.-T. Zhang, and L.-Y. Xu, "Indoor near field ranging algorithm based on adaptive time delay estimation," Chinese Journal of Computers, Vol. 40, 1902-1917, 2017.
20. Evans, B. J. and L. M. Smith, "Cross-correlation-based method for determining the position and velocity of a railgun plasma armature from B-dot probe signals," IEEE Transactions on Plasma Science, Vol. 19, 926-934, 2002.
doi:10.1109/27.108435
21. Wang, B., C. Zhang, and B. Liu, "Study on the class E amplifier of wireless energy transmission based on magnetic coupling resonance," Electronic Measurement Technology, Vol. 41, 41-44, 2018.
22. Xu, D. and F. Lin, "Design of CMOS class E power amplifier based on bootstrap cascode," Electronic Technology, Vol. 47, 78-81, 2018.
23. Zhang, J. G., W. Xin, Y. Z. Qi, et al. "Investigation on time domain coded electromagnetic exploration method," Journal of Radars, Vol. 3, 158-165, 2014.