School of Electrical and Electronic Engineering
Universiti Sains Malaysia
Malaysia
HomepageSchool of Electrical & Electronic Engineering
Universiti Sains Malaysia
Malaysia
HomepageSchool of Electrical and Electronic Engineering
Universiti Sains Malaysia
Malaysia
HomepageSchool of Electrical and Electronic Engineering
Universiti Sains Malaysia
Malaysia
HomepageSchool of Mineral & Resources Engineering
Universiti Sains Malaysia
Malaysia
HomepageDepartment of Electrical Engineering, Faculty of Engineering
University of Malaya
Malaysia
HomepageFaculty of Bioengineering and Technology
Universiti Malaysia Kelantan - Jeli Campus
Malaysia
Homepage1. Ban, Y.-L., et al. "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, Vol. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786
2. Zeng, Y. and R. Zhang, "Cost-effective millimeter-wave communications with lens antenna array," IEEE Wireless Communications, Vol. 24, 81-87, 2017.
doi:10.1109/MWC.2017.1600336
3. Wang, Y., et al. "5G mobile: Spectrum broadening to higher-frequency bands to support high data rates," IEEE Vehicular Technology Magazine, Vol. 9, No. 3, 39-46, 2014.
doi:10.1109/MVT.2014.2333694
4. Balanis, C. A., Modern Antenna Handbook, John Wiley & Sons, 2011.
5. Matin, M., B. Sharif, and C. Tsimenidis, "Dual layer stacked rectangular microstrip patch antenna for ultra wideband applications," IET Microwaves, Antennas & Propagation, Vol. 1, 1192-1196, 2007.
doi:10.1049/iet-map:20070051
6. Croq, F. and A. Papiernik, "Stacked slot-coupled printed antenna," IEEE Microwave and Guided Wave Letters, Vol. 1, 288-290, 1991.
doi:10.1109/75.89098
7. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, 1310-1312, 1995.
doi:10.1049/el:19950950
8. Xiao, S., B.-Z. Wang, W. Shao, and Y. Zhang, "Bandwidth-Enhancing Ultralow-Profile Compact Patch Antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, 3443-3447, 2005.
doi:10.1109/TAP.2005.858838
9. Lu, W.-J., Q. Li, S.-G.Wang, and L. Zhu, "Design approach to a novel dual-mode wideband circular sector patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, 4980-4990, 2017.
doi:10.1109/TAP.2017.2734073
10. Liu, N.-W., L. Zhu, W.-W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Transactions on Antennas and Propagation, Vol. 65, 1055-1062, 2017.
doi:10.1109/TAP.2017.2657486
11. Liu, J., Q. Xue, H. Wong, H. W. Lai, and Y. Long, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, 11-18, 2013.
doi:10.1109/TAP.2012.2214996
12. Liu, N.-W., L. Zhu, and W.-W. Choi, "A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM 10 and TM 30 modes," IEEE Transactions on Antennas and Propagation, Vol. 65, 1607-1614, 2017.
doi:10.1109/TAP.2017.2670329
13. Liu, J. and Q. Xue, "Broadband long rectangular patch antenna with high gain and vertical polarization," IEEE Transactions on Antennas and Propagation, Vol. 61, 539-546, 2013.
doi:10.1109/TAP.2012.2224838
14. Ding, C. and K.-M. Luk, "Low-profile magneto-electric dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1642-1644, 2016.
doi:10.1109/LAWP.2016.2519942
15. Li, M. and K.-M. Luk, "A differential-fed UWB antenna element with unidirectional radiation," IEEE Transactions on Antennas and Propagation, Vol. 64, 3651-3656, 2016.
doi:10.1109/TAP.2016.2565726
16. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135
17. Kamal, S. and A. A. Chaudhari, "Printed meander line MIMO antenna integrated with air gap, DGS and RIS: A low mutual coupling design for LTE applications," Progress In Electromagnetics Research, Vol. 71, 149-159, 2017.
doi:10.2528/PIERC16112008
18. Chattopadhyay, S., Trends in Research on Microstrip Antennas, 2017.
doi:10.5772/65580
19. Alkurt, F. O. and M. Karaaslan, "Characterization of tunable electromagnetic band gap material with disordered cavity resonator for X band imaging applications by resistive devices," Optical and Quantum Electronics, Vol. 51, No. 8, 279, 2019.
doi:10.1007/s11082-019-1995-5
20. Alkurt, F. O. and M. Karaaslan, "Pattern reconfigurable metasurface to improve characteristics of low profile antenna parameters," International Journal of RF and Microwave Computer-Aided Engineering, https://doi.org/10.1002/mmce.21790, 2019.
21. Bakır, M., et al. "Metamaterial characterization by applying different boundary conditions on triangular split ring resonator type metamaterials," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 30, No. 5, e2188, 2017.
doi:10.1002/jnm.2188
22. Sulyman, A. I., et al. "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38GHz millimeter-wave bands," IEEE Communications Magazine, Vol. 52, No. 9, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456
23. Hong, W., et al. "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, 2014.
doi:10.1109/MCOM.2014.6894454
24. Esen, M., et al. "Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces," Applied Nanoscience, 1-11, 2019.
25. Agilent Advanced Design System, Santa Rose, CA: Keysight EEsof EDA.
26. Wadell, B. C., Transmission Line Design Handbook, Artech House, 1991.
27. Alley, G. D., "Interdigital capacitors and their application to lumped-element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, No. 12, 1028-1033, 1970.
doi:10.1109/TMTT.1970.1127407
28. Bahl, I. J., Lumped Elements for RF and Microwave Circuits, Artech House, 2003.
29. CST Microwave Studio, LLC, US, Computer Simulation Technology Studio Suite.