Vol. 88
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-11-08
A Wide-Band Compact Quadrature Coupler on Multi-Layer Package Substrate
By
Progress In Electromagnetics Research Letters, Vol. 88, 1-8, 2020
Abstract
This paper presents the design of a 3.8 ~ 8.0 GHz wide-band quadrature coupler on a multi-layer package substrate. The asymmetric coupled-line 3-dB quadrature coupler has been designed on a four-layer microwave substrate, with a 10-mil thick top layer of Roger's RO4350B substrate press-joined to a 20-mil thick bottom layer of RO4350B, through 4-mil thick bond-ply material RO4450B. In the proposed design, the second and third metal layers are used as coupling layers, while the fourth (bottom) layer provides four signal pads and one large ground pad for connection with the test circuit. The mutual coupling is achieved through the overlay of coupled lines. Four VIA holes are used for signal transition from coupling layers to the bottom-layer pads. The SMD package quadrature coupler provides the ease of integration with other microwave circuits. The quadrature coupler chip size is 4.0 mm x 8.0 mm x 0.9 mm. The measurement results show a close resemblance to the EM-simulation results. The measured results depict reasonably flat 3-dB coupling and quadrature phase difference. The amplitude imbalance remains within 1.0 dB, while the phase imbalance always remains much less than 3.0 degrees. The return loss and isolation are better than 13 dB, throughout the whole frequency band. The proposed design is quick and simple. The manufacturing process is also cost-effective. To the best of the author's knowledge, these measured performance parameters in 71% fractional bandwidth associated with the compact size of the self-packaged device are better than those of the earlier published 4-layer design schemes of wideband quadrature couplers.
Citation
Umar Dilshad, Chen Chen, Amjad Altaf, Anyong Hu, and Jungang Miao, "A Wide-Band Compact Quadrature Coupler on Multi-Layer Package Substrate," Progress In Electromagnetics Research Letters, Vol. 88, 1-8, 2020.
doi:10.2528/PIERL19090504
References

1. Pozar, D. M., Microwave Engineering, 3rd Edition, Wiley, New York, 2005.

2. Dilshad, U., C. Chen, X. Chen, and J. Miao, "Broadband quadrature hybrid for image rejection in millimeter-wave receivers," IEEE 2019 16th International Bhurban Conference on Applied Sciences (IBCAST), 975-978, Islamabad, Jan. 2019.

3. Kim, H. J., S. J. Wang, W. Jung, and J. Kim, "Wideband 3 dB quadrature microstrip line coupler with unequally reduced wave impedances and asymmetrical configuration in parallel lines," 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), 1-4, Cocoa Beach, FL, 2015.

4. Wang, L., G. Wang, and J. Siden, "High-performance tight coupling microstrip directional coupler with fragment-type compensated structure," IET Microwaves, Antennas & Propagation, Vol. 11, No. 7, 1057-1063, 2017.
doi:10.1049/iet-map.2016.0905

5. Han, R., R. Sun, and S. Shi, "A wideband planar hybrid coupler using coupled-line power divider and broadband phase shifter," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi’an, 2017.

6. Bonney, J. and J. Schoebel, "Synthesis of extremely flat broadband multi-section quadrature coupler," German Microwave Conference (GeMIC), 1-4, Hamburg-Harburg, Germany, Mar. 2008.

7. Xu, Q. and Y. Ethan Wang, "Design and realization of compact folded Lange coupler," IEEE MTT-S International Microwave Symposium Digest, 1-3, Montreal, QC, Jun. 2012.

8. Stec, B. and M. Czyzewski, "Quadrature hybrid coupler with two broadside coupled microstripslot lines," 2018 22nd International Microwave and Radar Conference (MIKON), 282-285, Poznan, 2018.

9. Ahmed, O. M. H., A.-R. Sebak, and T. A. Denidni, "A novel butterfly-shaped multilayer backward microstrip hybrid coupler for ultrawideband applications," IEEE Microwave and Optical Technology Letters, Vol. 54, No. 10, 2231-2237, Oct. 2012.
doi:10.1002/mop.27092

10. Chen, Y., J. Zhou, Z. Yu, Y. Yin, and G. Peng, "Design of an ultra-wideband compact 90-degree 3 dB coupler for image-rejection up-converter," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi’an, 2017.

11. Abdelghani, L., T. A. Denidni, and M. Nedil, "Design of a broadband multilayer coupler for UWB beamforming applications," 2011 IEEE 41st European Microwave Conference, 810-813, Manchester, Oct. 2011.

12. Binti Muklas, N. S., S. K. A. Rahim, and N. Seman, "Ultra wideband coupler design for Butler Matrix application," IEEE 17th Asia Pacific Conference on Communications, 506-511, Sabah, Oct. 2011.

13. Moscoso-Martir, A., J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, "Slotcoupled multisection quadrature hybrid for UWB applications," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 143-145, Mar. 2009.
doi:10.1109/LMWC.2009.2013700

14. Abbosh, A. M. and M. E. Bialkowski, "Design of compact directional couplers for UWB applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 2, 189-194, Feb. 2007.
doi:10.1109/TMTT.2006.889150

15. Wang, Y., K. Ma, and S. Mou, "A transformer-based 3-dB differential coupler," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 7, 2151-2160, July 2018.
doi:10.1109/TCSI.2017.2778000

16. Wang, Y., K. Ma, and S. Mou, "A low loss and self-packaged patch coupler based on SISL platform," 2017 IEEE MTT-S International Microwave Symposium (IMS), 192-195, Honololu, HI, 2017.

17. Wang, Y., K. Ma, and S. Mou, "A high performance tandem coupler using substrate integrated suspended line technology," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, 328-330, May 2016.
doi:10.1109/LMWC.2016.2548566

18. Zhu, H. and Y. J. Guo, "Modified wideband tandem couplers with arbitrary coupling coefficient and its implementation in beam-forming networks," 2018 Asia-Pacific Microwave Conference (APMC), 542-544, Kyoto, 2018.

19. Dai, Y.-S., Y.-L. Lu, Q.-S. Luo, B.-Z. Zhan, X. Wang, and Y.-B. Jiang, "A microminiature 3 dB multilayer double-octave hybrid coupler using LTCC," IEEE Asia-Pacific Microwave Conference Proceedings, Suzhou, Dec. 2005.

20. Al-Taei, S., P. Lane, and G. Passiopoulos, "Design of high directivity directional couplers in multilayer ceramic technologies," 2001 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 01CH37157), Vol. 1, 51-54, Phoenix, AZ, May 2001.