Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-27
Dual-Mode Dual-Band Bandpass Filter with Asymmetrical Transmission Zeros
By
Progress In Electromagnetics Research M, Vol. 86, 193-202, 2019
Abstract
This paper presents a high-selectivity dual-mode dual-band bandpass filter with good cutoff signal rejection. The high-selectivity dual-mode dual-band bandpass filter is designed by an asymmetrical transmission zero (TZ). The asymmetrical transmission zeros next to the upper sideband of the first resonant filter and the TZ at the lower sideband of the second passband filter are combined to form a dual-mode dual-band filter. The locations of the TZ are designed at the side passbands of the filters in order to filter out unwanted signals, obtain good cutoff rate in the stopband, and give much improved signal selectivity for the dual-band bandpass filter. One dual-mode filter is designed at the center frequency of 1.8 GHz and the other's desired performance at 2.4 GHz. The two filters can be combined using the coupled feed lines in which these coupled feed lines present a simple structure of dual-mode dual-band bandpass filter. The insertion loss of the dual-mode dual-band bandpass filter is less than 1.2 dB, and the rejection between two transmission bands is about 18 dB from 1.9 to 2.35 GHz. This high-performance dual-mode dual-band bandpass filter can be used in many wireless communication systems.
Citation
Natchayathorn Wattikornsirikul, and Montree Kumngern, "Dual-Mode Dual-Band Bandpass Filter with Asymmetrical Transmission Zeros," Progress In Electromagnetics Research M, Vol. 86, 193-202, 2019.
doi:10.2528/PIERM19090101
References

1. Pozar, D. M., Microwave Engineering, 2nd Ed., Chap. 8, Wiley, New York, 1998.

2. Tsai, L. C. and C. W. Hsue, "Dual-band bandpass filters using equallength coupled-serial-shunted lines and Z-transform technique," Microw. Theory Tech., Vol. 52, No. 4, 1111-1117, Apr. 2004.
doi:10.1109/TMTT.2004.825680

3. Chang, S. F., Y. H. Jeng, and J. L. Chen, "Dual-band step-impedance bandpass filter for multimode wireless LANs," Electron. Lett., Vol. 40, No. 1, 38-39, 2004.
doi:10.1049/el:20040065

4. Chang, S. F., J. L. Chen, and S. C. Chang, "New dual-band bandpass filters with step-impedance resonators comb and hairpin structures," Proc. Asia Pacific Microw. Conf., 793-796, 2003.

5. Lee, H. M., C. R. Chen, C. C. Tsai, and C. M. Tsai, "Dual-band coupling and feed structure for microstrip filter design," IEEE MTT-S Int. Dig., 1971-1974, 2004.

6. Kuo, J. T. and H. S. Cheng, "Design of quasi elliptic function filters with a dual-passband response," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 472-474, Oct. 2004.
doi:10.1109/LMWC.2004.834560

7. Sun, S. and L. Zhu, "Coupling dispersion of parallel-coupled microstrip lines for dual-band filters with controllable fractional pass bandwidths," IEEE MTT-S Int. Dig., 2195-2198, Jun. 2005.

8. Cho, Y.-H., X.-G. Wang, and S.-W. Yun, "Design of dual-band interdigital bandpass filters using both series and shunt resonators," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 3, 111-113, Mar. 2012.
doi:10.1109/LMWC.2012.2185839

9. Chen, F., K. Song, B. Hu, and Y. Fan, "Compact dual-band bandpass filter using HMSIW resonator and slot perturbation," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, 686-688, Oct. 2014.
doi:10.1109/LMWC.2014.2342883

10. Zhu, H. and A. Abbosh, "A compact reconfigurable microstrip dual band filter using varactor-tuned stub-loaded stepped-impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 9, 675-677, Sep. 2016.
doi:10.1109/LMWC.2016.2597180

11. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Design of dual- and triplepassband filters using alternately cascaded multiband resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3550-3558, Sep. 2006.
doi:10.1109/TMTT.2006.880653

12. Du, C., K. Ma, and S. Mou, "A miniature SISL dual-band bandpass filter using a controllable multimode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 6, 557-559, Jun. 2017.
doi:10.1109/LMWC.2017.2701341

13. Li, J.-J., C.-F. Chen, and G.-Y. Wang, "A compact dual-band bandpass filter with flexible band control and simple layout," 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 1-5, IEEE, 2018.

14. Chen, C.-Y. and C.-Y. Hsu, "A simple and effective method for microstrip dual-band filters design," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 246-248, May 2006.
doi:10.1109/LMWC.2006.873584

15. Hong, J.-S. and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave open-loop resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 12, 2358-2365, 1997.
doi:10.1109/22.643844

16. Hong, J.-S. and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 7, 1098-1107, 2000.
doi:10.1109/22.848492

17. Athukorala, L., D. Budimir, and M. M. Potrebic, "Design of open-loop dual-mode microstrip filters," Progress In Electromagnetics Research Letters, Vol. 19, 179-185, 2010.
doi:10.2528/PIERL10102007

18. Hong, J.-S., H. Shaman, and Y.-H. Chun, "Dual-mode microstrip open-loop resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 8, 1764-1770, 2007.
doi:10.1109/TMTT.2007.901592