Vol. 87
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-27
Conjoined, 2.4/5-GHz WLAN Two-Monopole System Decoupled Using Mode-Controlled Capacitor for Notebook Computers
By
Progress In Electromagnetics Research M, Vol. 87, 1-10, 2019
Abstract
A low-profile, decoupled two-monopole system with its two parasitic grounded strips conjoined, forming a very compact structure is demonstrated. Each of the two identical antennas comprises a driven coupling strip and a parasitic grounded strip, operating respectively in the 2.4 GHz (2400-2484 MHz) and 5 GHz (5150-5825 MHz) wireless local area network (WLAN) bands. The two parasitic strips are further joined together, becoming a central, grounded T monopole. By loading a capacitor between the T monopole and the antenna ground, the mutual coupling in the 2.4 GHz band can be reduced by about 12 dB. The capacitor in this design is used to control Ant2 monopole mode to cancel out opposite-phased currents of the dipole mode on the T monopole when Ant1 is excited, such that isolation enhancement can be attained. The proposed two-monopole system occupies a compact size of 5 mm × 40 mm (about 0.04λ × 0.32λ at 2.4 GHz) and is favorable for applications in the narrow-bezel notebook computers owing to its low profile of 5 mm.
Citation
Che-Chi Wan, and Saou-Wen Su, "Conjoined, 2.4/5-GHz WLAN Two-Monopole System Decoupled Using Mode-Controlled Capacitor for Notebook Computers," Progress In Electromagnetics Research M, Vol. 87, 1-10, 2019.
doi:10.2528/PIERM19083006
References

1., RangBoost technology, ASUS, https://www.asus.com/Laptops/ ROG-Strix-Hero-II/.
doi:10.1109/COMST.2018.2871099

2. Khorov, E., A. Kiryanov, A. Lyakhov, and G. Bianchi, "A tutorial on IEEE 802.11ax high efficiency WLANs," IEEE Comm. Surveys & Tutorials, Vol. 21, 197-216, 2019.
doi:10.1109/TAP.2008.2005460

3. Mak, A. C. K., C. R. Rowell, and R. D. Murch, "Isolation enhancement between two closely packed antennas," IEEE Trans. Antennas Propagat., Vol. 56, 3411-3419, 2008.
doi:10.1002/mop.24831

4. Kang, T. W. and K. L. Wong, "Isolation improvement of 2.4/5.2/5.8 GHz WLAN internal laptop computer antennas using dual-band strip resonator as a wavetrap," Microw. Opt. Technol. Lett., Vol. 52, 58-64, 2010.
doi:10.1109/LAWP.2014.2345776

5. Guo, L., Y.Wang, Z. Du, Y. Gao, and D. Shi, "A compact uniplanar printed dual-antenna operating at the 2.4/5.2/5.8 GHz WLAN bands for laptop computers," IEEE Antennas Wireless Propagat. Lett., Vol. 13, 229-232, 2014.
doi:10.1109/LAWP.2015.2394473

6. Liu, Y., Y. Wang, and Z. Du, "A broadband dual-antenna system operating at the WLAN/WiMax bands for laptop computers," IEEE Antennas Wireless Propagat. Lett., Vol. 14, 1060-1063, 2015.
doi:10.1109/LAWP.2017.2713986

7. Deng, J. Y., J. Y. Li, L. Zhao, and L. X. Guo, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas Wireless Propagt. Lett., Vol. 16, 2270-2273, 2017.
doi:10.1002/mop.31858

8. Su, S. W. and Y. W. Hsiao, "Small-sized, decoupled two-monopole antenna system using the same monopole as decoupling structure," Microw. Opt. Technol. Lett., Vol. 61, 2049-2055, 2019.
doi:10.1109/TAP.2019.2925286

9. Su, S.-W., C. T. Lee, and Y. W. Hsiao, "Compact two-inverted-F-antenna system with highly integrated π-shaped decoupling structure," IEEE Trans. Antennas Propagat., Vol. 67, 6182-6186, 2019.
doi:10.1109/LAWP.2018.2858849

10. Su, S.-W., C. T. Lee, and S. C. Chen, "Very-low-profile, triband, two-antenna system for WLAN notebook computers," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 1626-1629, 2018.
doi:10.1109/TAP.2018.2790041

11. Sui, J. and K. L. Wu, "Self-curing decoupling technique for two inverted-F antennas with capacitive loads," IEEE Trans. Antennas Propagat., Vol. 68, 1093-1101, 2018.
doi:10.1002/mop.31505

12. Wong, K. L., B. W. Lin, and S. E. Lin, "High-isolation conjoined loop multi-input multi-output antennas for the fifth-generation tablet device," Microw. Opt. Technol. Lett., Vol. 61, 111-119, 2019.
doi:10.1002/mop.31156

13. Su, S.-W., "Very-low-profile, 2.4/5-GHz WLAN monopole antenna for large screen-to-body-ratio notebook computers," Microw. Opt. Technol. Lett., Vol. 60, 1313-1318, 2018.
doi:10.1109/ACCESS.2018.2794606

14. Su, S.-W., C. T. Lee, and S. C. Chen, "Compact, printed, tri-band loop antenna with capacitivelydriven feed and end-loaded inductor for notebook computers," IEEE Access, Vol. 6, 6692-6699, 2018.
doi:10.2528/PIERM18061904

15. Su, S.-W., "Capacitor-inductor-loaded, small-sized loop antenna for WLAN notebook computers," Progress In Electromagnetics Research M, Vol. 71, 179-188, 2018.
doi:10.2528/PIERL18121403

16. Su, S.-W., "Very-low-profile, small-sized, printed monopole antenna for WLAN notebook computer applications," Progress In Electromagnetics Research Letters, Vol. 82, 51-57, 2019.

17., ANSYS HFSS, ANSYS Inc., https://www.ansys.com/Products/Electronics/ANSYS-HFSS.
doi:10.1109/TAP.2019.2902656

18. "Novel and efficient parasitic decoupling network for closely coupled antennas," IEEE Trans. Antennas Propagat., Vol. 67, 3574-3585, 2019.

19., SG 64, SATIMO, http://www.mvg-world.com/en/products/field product family/antennameasurement- 2/sg-64.

20. Volakis, J. L., Antenna Engineering Handbook, 4th Edition, Chapter 6, 16–19, McGraw-Hill, New York, 2007.

21. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, Chapter 2, Wiley, Hoboken, NJ, 2012.