Vol. 90
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-04-02
Rain Attenuation for 5G Network in Tropical Region (Malaysia) for Terrestrial Link
By
Progress In Electromagnetics Research Letters, Vol. 90, 99-104, 2020
Abstract
Millimeter wave (mm-Wave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mm-Wave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and Wi Fi networks for an example from the era of 3G, 4G towards 5G mobile communication in near future. This paper presents studies on rain attenuation at 6 GHz and 28 GHz, which is widely used for local multipoint distribution service deployment by using the measured and prediction methods for terrestrial microwave links point to point in tropical regions. Besides this, discussion and comparison of five different reduction factor models have been presented. Several models have been proposed by researchers to account for the horizontal variation of rain fall. Five rain attenuation prediction models at tropical region are analyzed. The models are ITU-R model, revised Moupfouma model, revised Silva Mello model, Abdul Rahman model, and Lin model which have been analyzed. The objective of these studies to identify rain attenuation using prediction model for 5G network in tropical region for country like Malaysia. This study been carried out with setting of an experimental test bed. A link of path length 0.2 km was set up in Johor Bahru, Malaysia. Both the transmitter and receiver operate at frequencies of 6 GHz and 28 GHz. A tipping bucket rain rate used, and all the data have been recorded using data logger. At the end of the analysis, it is found that all the five models predict rain attenuation at less than 1 dB and 11 dB for operating microwave frequency at 6 GHz and 28 GHz for 5G Network, This findings will be useful for future 5G network designers to consider the effect of rain impairments especially in tropical region.
Citation
Kesavan Ulaganathen, Tharek Bin Abdul Rahman, Islam Md. Rafiqul, and Khaizuran Abdullah, "Rain Attenuation for 5G Network in Tropical Region (Malaysia) for Terrestrial Link," Progress In Electromagnetics Research Letters, Vol. 90, 99-104, 2020.
doi:10.2528/PIERL19082704
References

1. Crane, R. K., "Prediction of attenuation by rain," IEEE Transactions on Communication, Vol. 28, No. 9, September 1980.
doi:10.1109/TCOM.1980.1094844

2. Panagopoulos, D., P. D. M. Arapoglou, and G. C. Panayotis, "Satellite communications at Ku, Ka and V bands: Propagation impairments and mitigation techniques," IEEE Communications Surveys and Tutorials, 2004.

3. Kanellopoulos, J. D., S. G. Kouleoulas, N. J. Kolliopoulos, C. N. Capsalis, and S. G. Ventouras, "Rain attenuation problems affecting the performance of microwave communication systems," Ann Telecommunication, Vol. 45, No. 7–8, 1990.

4. Mandeep, J. S. and K. Tanaka, "Effects of atmospheric parameters on satellite link," Int. J. Infrared Milli. Waves, Vol. 28, 789-795, 2007.
doi:10.1007/s10762-007-9269-x

5. Mandeep, J. S., N. Y. Yann, and S. I. S. Hassan, "Case study of rain attenuation at Ka band," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11–12, 1517-1525, 2008.
doi:10.1163/156939308786390012

6. Kesavan, U., A. R. Tharek, A. Y. Abdul Rahman, and S. K. Abdul Rahim, "Comparative studies of the rain attenuation predictions for tropical regions," Progress In Electromagnetics Research M, Vol. 18, 17-30, 2011.
doi:10.2528/PIERM11012602

7. Crane, R. K., "Rain attenuation models: Attenuation by clouds and rain," Propagation Handbook for wireless Communication System, 225-280, CRC Press, USA, 2003.

8. Crane, R. K., Electromagnetic Wave Propagation through Rain, Chapters 1–4, A Wiley-Inter Science Publication, 1996.

9. Recommendation ITU-R P.838-3 (2005), , Specific attenuation model for rain for use in prediction methods, 2005.

10. Recommendation ITU-R P.530-16 (07/2015), , Propagation data and prediction methods required for the design of terrestrial line of sight systems, July 2015.

11. Moupfouma, F., "Electromagnetic waves attenuation due to rain: A prediction model for terrestrial or L.O.S SHF and EHF radio communication," J. Infrared Milli. Terahz Waves, Vol. 30, 622-632, 2009.
doi:10.1007/s10762-009-9481-y

12. Silva Mello, L. A. R., M. S. Pontes, R. S. L. Souza, and N. A. Garcia, "Prediction of rain attenuation in terrestrial link using full rain rate distribution," Electron Lett., Vol. 43, No. 25, 1442-1443, 2007.
doi:10.1049/el:20072410

13. Lin, S. H., "National long term rain statistics and empirical calculation of 11 GHz microwave rain attenuation," The Bell System Technical Journal, Vol. 56, No. 9, 1581-1604, 1977.
doi:10.1002/j.1538-7305.1977.tb00582.x

14. Abdulrahman, A. Y., T. A. Rahman, S. K. A. Rahim, and M. R. Ul Islam, "Empirically derived path reduction factor for terrestrial microwave links operating at 15GHz in Peninsula Malaysia," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 23-37, 2011.
doi:10.1163/156939311793898369

15. Final Reports on Rain Attenuation Studies for Communication Systems Operating in Tropical Regions, Wireless Communication Research Laboratory, Universiti Teknologi Malaysia, October 31, 2000.