Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-15
The Effect of Number of Pole Pairs on Torque Ripple of Magnetic Gear
By
Progress In Electromagnetics Research M, Vol. 86, 115-123, 2019
Abstract
Field modulation magnetic gear is a transmission device with broad development prospects. It has the advantages of no friction, no pollution, low maintenance, and easy installation. Magnetic gear models with different gear ratios are established. The input and output torque waveforms of different models are compared. The influences of the number of pole pairs of the inner rotor (P1) and the number of pole pairs of the outer rotor (P2) on torque ripple are analyzed. According to the principle of magnetic field modulation, the torque ripple of magnetic gear is greatly affected by P1 and P2. Research results show that the torque ripple can be effectively reduced by selecting the magnetic gear with P1 = 4, P1/P2 = 1/(n+0.25) or 1/(n+0.75) (n is a natural number).
Citation
Libing Jing, and Zhangxian Huang, "The Effect of Number of Pole Pairs on Torque Ripple of Magnetic Gear," Progress In Electromagnetics Research M, Vol. 86, 115-123, 2019.
doi:10.2528/PIERM19082702
References

1. Rasmussen, P. O., T. O. Andersen, F. T. Jorgensen, and O. Nielsen, "Development of a high-performance magnetic gear," IEEE Transactions on Industry Applications, Vol. 3, No. 41, 770, 2005.

2. Chen, M., K. Chau, W. Li, C. Liu, and C. Qiu, "Design and analysis of a new magnetic gear with multiple gear ratios," IEEE Transactions on Applied Superconductivity, Vol. 3, No. 24, 1-4, 2014.

3. Jing, L., T. Zhang, Y. Gao, R. Qu, Y. Huang, and T. Ben, "A novel HTS modulated coaxial magnetic gear with eccentric structure and Halbach arrays," IEEE Transactions on Appiled Superconductivity, Vol. 5, No. 29, 1-5, 2019.
doi:10.1109/TASC.2019.2892152

4. Jing, L., L. Liu, M. Xiong, and D. Feng, "Parameters analysis and optimization design for a concentric magnetic gear based on sinusoidal magnetizations," IEEE Transactions on Applied Superconductivity, Vol. 5, No. 24, 1-5, 2014.

5. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Transactions on Magnetics, Vol. 4, No. 37, 2844-2846, 2002.

6. Xia, D., "Damping system of permanent magnet gear and its application in contactless drive device of artificial heart," Transactions of China Electrotechnical Society, Vol. 2, No. 28, 91-96, 2013.

7. Jian, L., K. T. Chau, and J. Z. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Transactions on Industry Applications, Vol. 3, No. 45, 954-962, 2009.
doi:10.1109/TIA.2009.2018974

8. Wang, L. L., J. X. Shen, P. C. K. Luk, W. Z. Fei, C. F. Wang, and H. Hao, "Development of a magnetic-geared permanent-magnet brushless motor," IEEE Transactions on Magnetics, Vol. 10, No. 45, 4578-4581, 2009.
doi:10.1109/TMAG.2009.2023071

9. Chau, K. T., D. Zhang, J. Z. Jiang, C. Liu, and Y. Zhang, "Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles," IEEE Transactions on Magnetics, Vol. 6, No. 43, 2504-2506, 2007.
doi:10.1109/TMAG.2007.893714

10. Pakdelian, S., N. W. Frank, and H. A. Toliyat, "Magnetic design aspects of the trans-rotary magnetic gear," IEEE Transactions on Energy Conversion, Vol. 1, No. 30, 41-50, 2012.

11. Lee, J. and J. Chang, "Analysis of the vibration characteristics of coaxial magnetic gear," IEEE Transactions on Magnetics, Vol. 53, No. 6, 8105704, 2017.

12. Jing, L., L. Liu, M. Xiong, and D. Feng, "Parameters analysis and optimization design for a concentric magnetic gear based on sinusoidal magnetizations," IEEE Transactions on Applied Superconductivity, Vol. 5, No. 24, 1-5, 2014.

13. Kim, S. J., E. J. Park, S. Y. Jung, and Y. J. Kim, "Transfer torque performance comparison in coaxial magnetic gears with different flux-modulator shapes," IEEE Transactions on Magnetics, Vol. 6, No. 53, 1-4, 2017.

14. Fu, W. N. and L. Li, "Optimal design of magnetic gears with a general pattern of permanent magnet arrangement," IEEE Transactions on Applied Superconductivity, Vol. 7, No. 26, 1-5, 2016.

15. Ge, Y., Z. Yuan, P. Zhao, K. Zhao, and F. Fang, "Modeling and analysis of concentric permanent magnet gear startup characteristics," China Mechanical Engineering, Vol. 13, No. 29, 1513-1518+1523, 2008.

16. Yin, X., P. D. Pfister, and Y. Fang, "A novel magnetic gear: Toward a higher torque density," IEEE Transactions on Magnetics, Vol. 11, No. 51, 1-4, 2015.
doi:10.1109/TMAG.2015.2436058

17. Tian, Y., G. Liu, W. Zhao, and J. Ji, "Design and analysis of coaxial magnetic gears considering rotor losses," IEEE Transactions on Magnetics, Vol. 11, No. 51, 1-4, 2015.

18. Li, X., M. Cheng, and Y. Wang, "Analysis, design and experimental verification of a coaxial magnetic gear using stationary permanent-magnet ring," IET Electric Power Applications, Vol. 2, No. 12, 231-238, 2018.
doi:10.1049/iet-epa.2017.0382

19. Jing, L., Z. Luo, L. Liu, and Q. Gao, "Optimization design of magnetic gear based on genetic algorithm toolbox of Matlab," J. Electr. Eng. Technol., Vol. 5, No. 11, 1202-1209, 2016.
doi:10.5370/JEET.2016.11.5.1202

20. Jian, L. and K. T. Chau, "A coaxial magnetic gear with Halbach permanent-magnet arrays," IEEE Transactions on Energy Conversion, Vol. 2, No. 25, 328, 2010.