Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-19
Polycarbonate Based Overlapped Architecture for Landscape and Portrait Modes of mmWave 5G Smartphone
By
Progress In Electromagnetics Research M, Vol. 86, 135-144, 2019
Abstract
In this paper, a low-cost polycarbonate substrate is used for the design of antennas operating in the 28 GHz band. First, a corner bent inset fed patch antenna is proposed with a forward gain of 7 dBi and a front to back ratio of more than 18 dB indicating minimal radiation towards the user post-integration with a mobile terminal. In order to cater to the landscape mode, a corner bent tapered slot antenna is also proposed with a gain of 7 dBi. An overlapped architecture is investigated to demonstrate orthogonal pattern diversity with an effective radiating volume of 0.12λ03, a port to port distance of 0.13λ at 28 GHz, and mutual coupling of less than 27 dB without deterioration in the pattern integrity of the corresponding modes. Detailed simulated and measured results are presented with justification.
Citation
Gulur Sadananda Karthikeya, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "Polycarbonate Based Overlapped Architecture for Landscape and Portrait Modes of mmWave 5G Smartphone," Progress In Electromagnetics Research M, Vol. 86, 135-144, 2019.
doi:10.2528/PIERM19082301
References

1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, June 2011.
doi:10.1109/MCOM.2011.5783993

2. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, September 2014.
doi:10.1109/MCOM.2014.6894454

3. Friis, H. T., "A note on a simple transmission formula," Proceedings of the IRE, Vol. 34, No. 5, 254-256, May 1946.
doi:10.1109/JRPROC.1946.234568

4. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

5. Rowell, C. and E. Y. Lam, "Mobile-phone antenna design," IEEE Antennas and Propagation Magazine, Vol. 54, No. 4, 14-34, Aug. 2012.
doi:10.1109/MAP.2012.6309152

6. Huo, Y., X. Dong, and W. Xu, "5G cellular user equipment: From theory to practical hardware design," IEEE Access, Vol. 5, 13992-14010, 2017.
doi:10.1109/ACCESS.2017.2727550

7. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW fed wideband corner bent antenna for 5G mobile terminals," IEEE Access, Vol. 7, 10967-10975, 2019.
doi:10.1109/ACCESS.2019.2891728

8. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW fed conformal folded dipole with pattern diversity for 5G mobile terminals," Progress In Electromagnetics Research C, Vol. 87, 199-212, 2018.
doi:10.2528/PIERC18082902

9. Jilani, S. F. and A. Alomainy, "Planar millimeter-wave antenna on low-cost flexible PET substrate for 5G applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, Davos, 2016.

10. Jilani, S. F., M. O. Munoz, Q. H. Abbasi, and A. Alomainy, "Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 84-88, Jan. 2019.
doi:10.1109/LAWP.2018.2881303

11. Hawatmeh, D. F., S. LeBlanc, P. I. Deffenbaugh, and T. Weller, "Embedded 6-GHz 3-D printed half-wave dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 145-148, 2017.
doi:10.1109/LAWP.2016.2561918

12. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2183-2186, 2017.
doi:10.1109/LAWP.2017.2703850

13. Zhu, S., H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 776-779, May 2018.
doi:10.1109/LAWP.2018.2816038

14. Alhalabi, R. A. and G. M. Rebeiz, "High-efficiency angled-dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, 2008.
doi:10.1109/TAP.2008.929506

15. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6721-6727, December 2017.
doi:10.1109/TAP.2017.2700891

16. Reddy, G. S., A. Kamma, S. Kharche, J.Mukherjee, and S. K.Mishra, "Cross-configured directional UWB antennas for multidirectional pattern diversity characteristics," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 853-858, February 2015.
doi:10.1109/TAP.2014.2382687

17. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710

18. Liu, F., J. Guo, L. Zhao, X. Shen, and Y. Yin, "A meta-surface decoupling method for two linear polarized antenna array in sub-6GHz base station applications," IEEE Access, Vol. 7, 2759-2768, 2019.
doi:10.1109/ACCESS.2018.2886641

19. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2017.
doi:10.1109/LAWP.2016.2626394

20. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "One- and two-dimensional beamswitching antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 564-573, February 2016.
doi:10.1109/TAP.2015.2508478

21. Briqech, Z., A. Sebak, and T. A. Denidni, "Wide-scan MSC-AFTSA array-fed grooved spherical lens antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2971-2980, July 2016.
doi:10.1109/TAP.2016.2565704

22. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, April 2013.
doi:10.1109/TAP.2012.2237154

23. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Millimeter-wave antenna with wide-scan angle radiation characteristics for MIMO applications," Int. J. RF Microw. Comput. Aided Eng., e21564, 2018.