Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-21
A Two-Step Method for the Low-Sidelobe Synthesis of Uniform Amplitude Planar Sparse Arrays
By
Progress In Electromagnetics Research M, Vol. 86, 153-162, 2019
Abstract
A two-step method combining the algorithms of iterative Fourier transform (IFT) and differential evolution (DE), called IFT-DE, is proposed in this paper for the low sidelobe synthesis of a uniform amplitude planar sparse array (PSA). Firstly, the entire aperture of the array is divided into a set of square lattices that a respaced at half wavelength. Then the elementsare forced to be located on the lattices through performing IFT, so that a planar thinned array (PTA) is formed across the aperture. Undoubtedly the interval between adjacent elementsof the PTA is an integer multiple of half wavelength. In the second step, for each column of PTA the elements spaced greater than or equal to a wavelength are selected as the candidates whose locations need to be optimized by DE procedure, as long as the renewed inter-element spacing is not less than half wavelength. Consequently, a PSA with reduced sidelobe level may be obtained. According to the aforementioned selection rule, only a small part of elements that account for the total number need to be relocated, which denotes thatthe number of individual parameters waiting for optimizing by DE is decreased considerably, and thereby greatly accelerates the convergence speed of the algorithm. A set of synthesis experiments for PSA ranging from small to moderate size are presented to validate the effectiveness of the proposed method.
Citation
Lanmei Wang, Xin-Kuan Wang, Guibao Wang, and Jian-Ke Jia, "A Two-Step Method for the Low-Sidelobe Synthesis of Uniform Amplitude Planar Sparse Arrays," Progress In Electromagnetics Research M, Vol. 86, 153-162, 2019.
doi:10.2528/PIERM19080612
References

1. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Edition, Artech House, Norwood, MA, Boston, 2005.

2. Skolnik, M., G. Nemhauser, and J. Sherman, "Dynamic programming applied to unequally spaced elements," IEEE Trans. Antennas Propag., Vol. 12, No. 1, 35-43, 1964.
doi:10.1109/TAP.1964.1138163

3. Redlich, R. W., "Iterative least-squares synthesis of nonuniformly spaced linear arrays," IEEE Trans. Antennas Propag., Vol. 21, No. 1, 106-108, 1973.
doi:10.1109/TAP.1973.1140405

4. Leahy, R. M. and B. D. Jeffs, "On the design of maximally sparse beamforming arrays," IEEE Trans. Antennas Propag., Vol. 39, No. 8, 1178-1187, 1991.
doi:10.1109/8.97353

5. Holm, S., B. Elgetun, and G. Dahl, "Properties of the beam pattern of weight- and layout-optimized sparse arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 44, No. 5, 983-991, 1997.
doi:10.1109/58.655623

6. Murino, V., A. Trucco, and C. S. Regazzoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Transactions on Signal Processing, Vol. 44, No. 1, 119-123, 1996.
doi:10.1109/78.482017

7. Trucco, A. and V. Murino, "Stochastic optimization of linear sparse arrays," IEEE J. Ocean. Eng., Vol. 24, No. 3, 291-299, 1999.
doi:10.1109/48.775291

8. Chen, K., X. Yun, Z. He, et al. "Synthesis of sparse planar arrays using modified real genetic algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1067-1073, 2007.
doi:10.1109/TAP.2007.893375

9. Chen, K., H. Chen, L. Wang, et al. "Modified real GA for the synthesis of sparse planar circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 274-277, 2016.
doi:10.1109/LAWP.2015.2440432

10. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361

11. Lin, C., A. Qing, and Q. Feng, "Synthesis of unequally spaced antenna arrays by using differential evolution," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2553-2561, 2010.
doi:10.1109/TAP.2010.2048864

12. Goudos, S. K., K. Siakavara, T. Samaras, et al. "Sparse linear array synthesis with multiple constraints using differential evolution with strategy adaptation," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 670-673, 2011.
doi:10.1109/LAWP.2011.2161256

13. Liu, D., Q. Feng, W.-B. Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502

14. Donelli, M., A. Martini, and A. Massa, "A hybrid approach based on PSO and hadamard difference sets for the synthesis of square thinned arrays," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2491-2495, 2009.
doi:10.1109/TAP.2009.2024570

15. Bucci, O. M., M. D’Urso, T. Isernia, et al. "Deterministic synthesis of uniform amplitude sparse arrays via new density taper techniques," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1949-1958, 2010.
doi:10.1109/TAP.2010.2046831

16. Bucci, O. M. and S. Perna, "A deterministic two dimensional density taper approach for fast design of uniform amplitude pencil beams arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 2852-2861, 2011.
doi:10.1109/TAP.2011.2158783

17. Bucci, O. M., T. Isernia, and A. F. Morabito, "An effective deterministic procedure for the synthesis of shaped beams by means of uniform-amplitude linear sparse arrays," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 169-175, 2013.
doi:10.1109/TAP.2012.2219844

18. Morabito, A. F., T. Isernia, and L. Di Donato, "Optimal synthesis of phase-only reconfigurable linear sparse arrays having uniform-amplitude excitations," Progress In Electromagnetics Research, Vol. 124, 405-423, 2012.
doi:10.2528/PIER11112210

19. Morabito, A. F., A. R. Lagana, and T. Isernia, "Isophoric array antennas with a low number of control points: A ‘size tapered’ solution," Progress In Electromagnetics Research Letters, Vol. 36, 121-131, 2013.
doi:10.2528/PIERL12092705

20. Morabito, A. F. and P. G. Nicolaci, "Optimal synthesis of shaped beams through concentric ring isophoric sparse arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 979-982, 2017.
doi:10.1109/LAWP.2016.2615762

21. Oliveri, G. and A. Massa, "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 467-481, 2011.
doi:10.1109/TAP.2010.2096400

22. Oliveri, G., M. Carlin, and A. Massa, "Complex-weight sparse linear array synthesis by bayesian compressive sampling," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2309-2326, 2012.
doi:10.1109/TAP.2012.2189742

23. Morabito, A. F. and P. Rocca, "Reducing the number of elements in phase-only reconfigurable arrays generating sum and difference patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1338-1341, 2015.
doi:10.1109/LAWP.2015.2404939

24. Morabito, A. F., "Synthesis of maximum-efficiency beam arrays via convex programming and compressive sensing," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2404-2407, 2017.
doi:10.1109/LAWP.2017.2721218

25. Rocca, P., G. Oliveri, R. J. Mailloux, et al., "Unconventional phased array architectures and design methodologies — A review," Proceedings of the IEEE, Vol. 103, No. 3, 544-560, 2016.
doi:10.1109/JPROC.2015.2512389

26. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2757-2760, 2008.
doi:10.1109/TAP.2008.927580

27. Keizer, W. P. M. N., "ow-sidelobe pattern synthesis using iterative Fourier techniques coded in MATLAB," IEEE Antennas and Propagation Magazine, Vol. 51, No. 2, 137-150, 2009.
doi:10.1109/MAP.2009.5162038

28. Keizer, W. P. M. N., "Large planar array thinning using iterative FFT techniques," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3359-3362, 2009.
doi:10.1109/TAP.2009.2029382

29. Wang, X.-K. and G.-B. Wang, "A hybrid method based on the iterative fourier transform and the differential evolution for pattern synthesis of sparse linear arrays," International Journal of Antennas and Propagation, Vol. 2018, 1-7, 2018.

30. Price, K. V., R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series Springer, 2005.

31. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, 38-49, 2011.
doi:10.1109/MAP.2011.5773566

32. Ha, B. V., M. Mussetta, P. Pirinoli, et al. "Modified compact genetic algorithm for thinned array synthesis," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1105-1108, 2016.
doi:10.1109/LAWP.2015.2494839