Vol. 166
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-12-17
Phaseless Microwave Imaging of Dielectric Cylinders: an Artificial Neural Networks-Based Approach
By
Progress In Electromagnetics Research, Vol. 166, 95-105, 2019
Abstract
An inverse method for parameters estimation of dielectric cylinders (dielectric properties, location, and radius) from amplitude-only microwave information is presented. To this end two different Artificial Neural Networks (ANN) topologies were compared; a Multilayer Perceptron (MLP) and a Convolutional Neural Network (CNN). Several two-dimensional (2D) simulations, with different sizes and locations of homogeneous dielectric cylinders employing the Finite Differences Time Domain (FDTD) method, were performed to generate training, validation, and test sets for both ANN models. The prediction errors were lower for the CNN in high Signal-to-Noise Ratio (SNR) scenarios, although the MLP was more robust in low SNR situations. The CNN model performance was also tested for 2D simulations of dielectrically homogeneous and heterogeneous cylinders placed in acrylic holders showing potential experimental applications. Moreover, the CNN was also tested for a three-dimensional model simulated as realistic as possible, showing good results in predicting all parameters directly from the S-parameters.
Citation
Jesús E. Fajardo, Julián Galván, Fernando Vericat, Carlos Manuel Carlevaro, and Ramiro Miguel Irastorza, "Phaseless Microwave Imaging of Dielectric Cylinders: an Artificial Neural Networks-Based Approach," Progress In Electromagnetics Research, Vol. 166, 95-105, 2019.
doi:10.2528/PIER19080610
References

1. Pastorino, M., Microwave Imaging, John Wiley & Sons, 2010.
doi:10.1002/9780470602492

2. Costanzo, S., G. Di Massa, M. Pastorino, and A. Randazzo, "Hybrid microwave approach for phaseless imaging of dielectric targets," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 4, 851-854, 2015.
doi:10.1109/LGRS.2014.2364077

3. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 12, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676

4. Li, L., W. Zhang, and F. Li, "Tomographic reconstruction using the distorted Rytov iterative method with phaseless data," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 3, 479-483, 2008.
doi:10.1109/LGRS.2008.919818

5. Li, L., H. Zheng, and F. Li, "Two-dimensional contrast source inversion method with phaseless data: TM case," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1719-1736, 2008.

6. Bermani, E., S. Caorsi, and M. Raffetto, "Microwave detection and dielectric characterization of cylindrical objects from amplitude-only data by means of neural networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1309-1314, 2002.
doi:10.1109/TAP.2002.801274

7. Alvarez, Y., M. Garcia-Fernandez, L. Poli, C. Garcıa-Gonzalez, P. Rocca, A. Massa, and F. Las- Heras, "Inverse scattering for monochromatic phaseless measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 1, 45-60, 2016.
doi:10.1109/TIM.2016.2615478

8. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui, "Deepnis: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, 2018.
doi:10.1109/TAP.2017.2768562

9. Kamilov, U. S., D. Liu, H. Mansour, and P. T. Boufounos, "A recursive born approach to nonlinear inverse scattering," IEEE Signal Processing Letters, Vol. 23, No. 8, 1052-1056, 2016.
doi:10.1109/LSP.2016.2579647

10. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning, MIT press, 2016.

11. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, 2018.

12. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, Vol. 26, No. 9, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099

13. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015.

14. Meaney, P. M., T. Zhou, D. Goodwin, A. Golnabi, E. A. Attardo, and K. D. Paulsen, "Bone dielectric property variation as a function of mineralization at microwave frequencies," Journal of Biomedical Imaging, Vol. 7, 2012.

15. Meaney, P. M., D. Goodwin, A. Golnabi, T. Zhou, M. Pallone, S. Geimer, G. Burke, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE transactions on biomedical engineering, Vol. 59, No. 12, 3304-3313, 2012.
doi:10.1109/TBME.2012.2209202

16. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, January 2010.
doi:10.1016/j.cpc.2009.11.008

17. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.

18. Arslanagic, S. and O. Breinbjerg, "Electric-line-source illumination of a circular cylinder of lossless double-negative material: An investigation of near field, directivity, and radiation resistance," IEEE Antennas and Propagation Magazine, Vol. 48, No. 3, 38-54, 2006.
doi:10.1109/MAP.2006.1703397

19. Attardo, E. A., A. Borsic, G. Vecchi, and P. M. Meaney, "Whole-system electromagnetic modeling for microwave tomography," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1618-1621, 2012.
doi:10.1109/LAWP.2013.2237745

20. Chollet, F., et al. "Keras,", https://github.com/fchollet/keras, 2015.

21. Abadi, M., et al. "TensorFlow: Large-scale machine learning on heterogeneous systems,", 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/.

22. Ruder, S., "An overview of gradient descent optimization algorithms,", arXiv preprint arXiv:1609.04747, 2016.

23. Nair, V. and G. R. Hinton, "Rectified linear units improve restricted boltzmann machines," Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807-814, 2010.

24. Kingma, D. P. and J. Ba, "Adam: A method for stochastic optimization,", arXiv preprint arXiv:1412.6980, 2014.

25. Sihvola, A., "Electromagnetic mixing formulas and applications," IET Electromagnetic Waves Series, Vol. 47, 1999.