1. Pastorino, M., Microwave Imaging, John Wiley & Sons, 2010.
doi:10.1002/9780470602492
2. Costanzo, S., G. Di Massa, M. Pastorino, and A. Randazzo, "Hybrid microwave approach for phaseless imaging of dielectric targets," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 4, 851-854, 2015.
doi:10.1109/LGRS.2014.2364077
3. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 12, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676
4. Li, L., W. Zhang, and F. Li, "Tomographic reconstruction using the distorted Rytov iterative method with phaseless data," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 3, 479-483, 2008.
doi:10.1109/LGRS.2008.919818
5. Li, L., H. Zheng, and F. Li, "Two-dimensional contrast source inversion method with phaseless data: TM case," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1719-1736, 2008.
6. Bermani, E., S. Caorsi, and M. Raffetto, "Microwave detection and dielectric characterization of cylindrical objects from amplitude-only data by means of neural networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1309-1314, 2002.
doi:10.1109/TAP.2002.801274
7. Alvarez, Y., M. Garcia-Fernandez, L. Poli, C. Garcıa-Gonzalez, P. Rocca, A. Massa, and F. Las- Heras, "Inverse scattering for monochromatic phaseless measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 66, No. 1, 45-60, 2016.
doi:10.1109/TIM.2016.2615478
8. Li, L., L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui, "Deepnis: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Transactions on Antennas and Propagation, 2018.
doi:10.1109/TAP.2017.2768562
9. Kamilov, U. S., D. Liu, H. Mansour, and P. T. Boufounos, "A recursive born approach to nonlinear inverse scattering," IEEE Signal Processing Letters, Vol. 23, No. 8, 1052-1056, 2016.
doi:10.1109/LSP.2016.2579647
10. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning, MIT press, 2016.
11. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, 2018.
12. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Transactions on Image Processing, Vol. 26, No. 9, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099
13. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015.
14. Meaney, P. M., T. Zhou, D. Goodwin, A. Golnabi, E. A. Attardo, and K. D. Paulsen, "Bone dielectric property variation as a function of mineralization at microwave frequencies," Journal of Biomedical Imaging, Vol. 7, 2012.
15. Meaney, P. M., D. Goodwin, A. Golnabi, T. Zhou, M. Pallone, S. Geimer, G. Burke, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE transactions on biomedical engineering, Vol. 59, No. 12, 3304-3313, 2012.
doi:10.1109/TBME.2012.2209202
16. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, January 2010.
doi:10.1016/j.cpc.2009.11.008
17. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.
18. Arslanagic, S. and O. Breinbjerg, "Electric-line-source illumination of a circular cylinder of lossless double-negative material: An investigation of near field, directivity, and radiation resistance," IEEE Antennas and Propagation Magazine, Vol. 48, No. 3, 38-54, 2006.
doi:10.1109/MAP.2006.1703397
19. Attardo, E. A., A. Borsic, G. Vecchi, and P. M. Meaney, "Whole-system electromagnetic modeling for microwave tomography," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1618-1621, 2012.
doi:10.1109/LAWP.2013.2237745
20. Chollet, F., et al. "Keras,", https://github.com/fchollet/keras, 2015.
21. Abadi, M., et al. "TensorFlow: Large-scale machine learning on heterogeneous systems,", 2015, software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/.
22. Ruder, S., "An overview of gradient descent optimization algorithms,", arXiv preprint arXiv:1609.04747, 2016.
23. Nair, V. and G. R. Hinton, "Rectified linear units improve restricted boltzmann machines," Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807-814, 2010.
24. Kingma, D. P. and J. Ba, "Adam: A method for stochastic optimization,", arXiv preprint arXiv:1412.6980, 2014.
25. Sihvola, A., "Electromagnetic mixing formulas and applications," IET Electromagnetic Waves Series, Vol. 47, 1999.