Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-11-26
Study of Transmitter Interference to Receiver at 2 GHz with High Antenna Port Isolation
By
Progress In Electromagnetics Research M, Vol. 86, 183-192, 2019
Abstract
The paper presents simulated and measurement results of a planar antenna structure at 2 GHz center frequency. The antenna has two ports implemented into the same conductive body. The antenna shows measured -10 dB impedance bandwidth from 1.87 GHz to 2.18 GHz with average 41.3 dB isolation between the antenna ports over the studied frequency bandwidth. Antenna is used to measure transmitted WCDMA FDD signal leakage to the receiver with a presence of blocker signal, which is transmitted over the air. The system measurements show that the RF filtering requirements can be relaxed based on 3GPP standard by using highly isolated antenna structure. Application areas can be found at the both ends of the mobile communications system, mobile devices and small cell base stations.
Citation
Marko Sonkki, Janne Aikio, Marko E. Leinonen, and Aarno Pärssinen, "Study of Transmitter Interference to Receiver at 2 GHz with High Antenna Port Isolation," Progress In Electromagnetics Research M, Vol. 86, 183-192, 2019.
doi:10.2528/PIERM19080105
References

1., User equipment (UE) radio transmission and reception (Release 16) 3GPP TS 36.104 V16.1.0, Apr. 2019.
doi:10.1109/TMTT.2017.2728039

2., iPhone XR specification, available: https://www.apple.com/lae/iphone-xr/specs/.
doi:10.1109/JSAC.2014.2330193

3. Van Liempd, B., A. Visweswaran, S. Ariumi, S. Hitomi, P. Wambacq, and J. Craninckx, "Adaptive RF front-ends using electrical-balance duplexers and tuned SAW resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4621-4628, Nov. 2017.
doi:10.1109/LAWP.2017.2750698

4. Sabharwal, A., P. Schniter, D. Guo, D. Bliss, S. Rangarajan, and R. Wich-Man, "Inband full-duplex wireless: Challenges and opportunities," IEEE Journal on Selected Areas in Communications, Vol. 32, 1637-1652, Sep. 2014.
doi:10.1109/ACCESS.2018.2807415

5. Wang, X., W. Che, W. Yang, W. Feng, and L. Gu, "Self-interference cancellation antenna using auxiliary port reflection for full-duplex application," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2873-2876, Sep. 2017.
doi:10.1109/LAWP.2018.2805827

6. Douglas, T. J. and K. Sarabandi, "A high-isolation two-port planar antenna system for communication and radar applications," IEEE Access, Vol. 6, 9951-9959, Feb. 2018.

7. Zhou, C., H. Wong, and L. K. Yeung, "A wideband dual-polarized inductor-end slot antenna with stable beamwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 608-612, Apr. 2018.

8. Ekrami, H. and S. Jam, "A compact triple-band dual-element MIMO antenna with high portto- port isolation for wireless applications," AEU — International Journal of Electronics and Communications, Vol. 96, 219-227, Nov. 2018.
doi:10.2528/PIERM18101103

9. Gbafa, K., A. Diallo, P. Le Thuc, and R. Staraj, "Tx/Rx antenna system for full-duplex application," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, Jul. 8–13, 2018.

10. Alsaif, H., M. Usman, M. T. Chughtai, and J. Nasir, "Cross polarized 2×2 UWB-MIMO antenna system for 5G wireless applications," Progress In Electromagnetics Research M, Vol. 76, 157-166, 2018.
doi:10.2528/PIERC17090702

11. Douglas, T. J. and K. Sarabandi, "Compact planar antenna system for full-duplex wireless applications," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, Jul. 8–13, 2018.

12. Jaglan, N., S. D. Gupta, B. K. Kanaujia, S. Srivastava, and E. Thakur, "Triple band notched DGCEBG structure based UWB MIMO/diversity antenna," Progress In Electromagnetics Research C, Vol. 80, 21-37, 2018.
doi:10.2528/PIERC18061803

13. Jiang, W., Y. Liu, Y. Cui, B. Wang, and S. Gong, "Compact wide-band MIMO antenna with high port isolation," 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, Apr. 9–13, 2018.

14. Chaudhari, A. A. and R. K. Gupta, "A simple tri-band MIMO antenna using a single ground stub," Progress In Electromagnetics Research C, Vol. 86, 191-201, 2018.
doi:10.1109/TAP.2017.2776346

15. Deo, P., D. Mirshekar-Syahkal, and G. Zheng, "EBG enhanced broadband dual antenna configuration for passive self-interference suppression in full-duplex communications," 15th European Radar Conference (EuRAD), Madrid, Spain, Sep. 26–28, 2018.
doi:10.2528/PIERC19032303

16. Zhai, H., L. Xi, Y. Zang, and L. Li, "A low-profile dual-polarized high-isolation MIMO antenna arrays for wideband base-station applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 191-202, Jan. 2018.
doi:10.1109/LAWP.2019.2901838

17. Marzouk, H. M., M. I. Ahmed, and A.-E. H. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.1109/TAP.2018.2889596

18. Zhou, Z., Z. Wei, Z. Tang, and Y. Yin, "Design and analysis of a wideband multiple-microstrip dipole antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 722-726, Apr. 2019.
doi:10.1109/TAP.2019.2911619

19. Nie, L. Y., X. Q. Lin, Z. Q. Yang, J. Zhang, and B. Wang, "Structure-shared planar UWB MIMO antenna with high isolation for mobile platform," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2735-2738, Apr. 2019.
doi:10.2528/PIERM18100903

20. Feng, B., L. Li, J.-C. Cheng, and C.-T.-D. Sim, "A dual-band dual-polarized stacked microstrip antenna with high-isolation and band-notch characteristics for 5G microcell communications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4506-4516, Jul. 2019.
doi:10.1109/ACCESS.2019.2934156

21. Yang, B., J. Zhou, and J. J. Adams, "A shape-first, feed-next design approach for compact planar MIMO antennas," Progress In Electromagnetics Research M, Vol. 77, 157-165, 2019.
doi:10.1109/LAWP.2019.2928886

22. Chen, Z., M. Li, G. Liu, Z. Wu, and M.-C. Tang, "Isolation enhancement for wideband, circularly/dual-polarized, high-density patch arrays using planar parasitic resonators," IEEE Access, Vol. 7, 112249-112257, Aug. 2019.
doi:10.3390/electronics8090994

23. Zhang, P., S.-W. Qu, and S. Yang, "Dual-polarized planar phased array antenna with cavity-backed elements," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1736-1740, Sep. 2019.
doi:10.2528/PIERM19071506

24. Li, Q., Y. Wei, M. Tan, X. Lei, G. Wu, M. Huang, and Y. Gong, "Flexibly extensible planar self-isolated wideband MIMO antenna for 5G communications," MDPI Electronics, Vol. 8, 994, Sep. 2019.

25. Aly, M. G., C. Mao, S. Gao, and Y. Wang, "A Ku-band filtering duplex antenna for satellite communications," Progress In Electromagnetics Research M, Vol. 85, 1-10, 2019.
doi:10.1002/0471720615

26. Li, M., R. Wang, J. M. Yasir, and L. Jiang, "A miniaturized dual-band dual-polarized bandnotched slot antenna array with high isolation for base station applications," IEEE Transactions on Antennas and Propagation, (Early Access), Sep. 2019.
doi:10.1002/0471720615

27. Milligan, T. A., Modern Antenna Design, 2nd Edition, 614, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
doi:10.1002/0471720615

28., NXP’s MRF21030 LDMOS power transistor. Availbale: https://www.nxp.com/docs/en/datasheet/ MRF21030.pdf.

29., Ophir Solid state broadband high power RF amplifier. Available: https://ophirrf.com/wpcontent/ uploads/2015/10/5162.pdf.