1. Li, S. and C. C. Mi, "Wireless power transfer for electric vehicle applica-tions," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 3, No. 1, 4-17, 2015.
doi:10.1109/JESTPE.2014.2319453
2. Sergeant, P. and A. V. D. Bossche, "Inductive coupler for contactless power transmission," IET Elect. Power Appl., Vol. 2, No. 1, 1-7, 2008.
doi:10.1049/iet-epa:20070059
3. Omer Onar, C., et al. "Oak ridge national laboratory wireless charging of electric vehicles — CRADA report," Tech. Rep., Oak Ridge National Lab., Oak Ridge, TN, USA, TM-2016-296, 2016.
4. Kim, J. W., H.-C. Son, D.-H. Kim, and Y.-J. Park, "Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV," IEEE Transactions on Consumer Electronics, Vol. 58, No. 3, 775-780, 2012.
doi:10.1109/TCE.2012.6311317
5. Choi, B., J. Nho, H. Cha, T. Ahn, and S. Choi, "Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device," IEEE Trans. Ind. Electron., Vol. 51, No. 1, 140-147, 2004.
doi:10.1109/TIE.2003.822039
6. Li, Q. and Y. C. Liang, "An inductive power transfer system with a high-Q resonant tank for mobile device charging," IEEE Trans. Power Electron., Vol. 30, No. 11, 6203-6212, 2015.
doi:10.1109/TPEL.2015.2424678
7. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "Stable and high efficiency wireless power transfer system for robotic capsule using a modified Helmholtz coil," IEEE Trans. Ind. Electron., Vol. 64, No. 2, 1113-1122, 2017.
doi:10.1109/TIE.2016.2614268
8. Park, S. I., "Enhancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
doi:10.2528/PIER12110902
9. Simic, M., C. Bil, and V. Vojisavljevic, "Investigation in wireless power transmission for UAV charging," Procedia Comput. Sci., Vol. 60, 1846-1855, 2015.
doi:10.1016/j.procs.2015.08.295
10. Xu, J., Y. Zeng, and R. Zhang, "UAV-enabled wireless power transfer: Trajectory design and energy optimization," IEEE Trans. Wireless Commun., Vol. 17, No. 8, 5092-5106, 2018.
doi:10.1109/TWC.2018.2838134
11. Liu, H. Q., H. C. So, K. W. K. Lui, and F. K. W. Chan, "Sensor selection for target tracking in sensor networks," Progress In Electromagnetics Research, Vol. 131, 267-282, 2009.
doi:10.2528/PIER09070802
12. Hong, Y. W. P., T. C. Hsu, and P. Chennakesavula, "Wireless power transfer for distributed estimation in wireless passive sensor networks," IEEE Trans. Signal Process., Vol. 64, No. 20, 5382-5395, 2016.
doi:10.1109/TSP.2016.2595491
13. Hui, S. Y. R., "Technical and safety challenges in emerging trends of near-field wireless power transfer industrial guidelines," IEEE Trans. Electromagn. Compat., Vol. 7, No. 1, 78-86, 2018.
doi:10.1109/MEMC.0.8339551
14. Lu, F., H. Zhang, H. Hofmann, and C. Mi, "A double-sided LC-compensation circuit for loosely coupled capacitive power transfer," IEEE Trans. Power Electron., Vol. 33, No. 2, 1633-1643, 2018.
doi:10.1109/TPEL.2017.2674688
15. Pinuela, M., D. C. Yates, S. Lucyszyn, and P. D. Mitcheson, "Maximizing DC-to-load efficiency for inductive power transfer," IEEE Trans. Power Electron., Vol. 28, No. 5, 2437-2447, 2013.
doi:10.1109/TPEL.2012.2215887
16. Fan, Y., L. Li, S. Yu, C. Zhu, and C.-H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711
17. Deng, Q. J., J. T. Liu, D. Czarkowski, W. S. Hu, and H. Zhou, "An inductive power transfer system supplied by a multiphase parallel inverter," IEEE Trans. Ind. Electron., Vol. 64, No. 9, 7039-7048, 2017.
doi:10.1109/TIE.2017.2686351
18. Hao, H., G. A. Covic, and J. T. Boys, "A parallel topology for inductive power transfer power supplies," IEEE Trans. Power Electron., Vol. 29, No. 3, 1140-1151, 2014.
doi:10.1109/TPEL.2013.2262714
19. Faria, J. B., "Poynting vector flow analysis for contactless energy transfer in magnetic systems," IEEE Trans. Power Electron., Vol. 27, No. 10, 4292-4300, 2012.
doi:10.1109/TPEL.2012.2191421
20. Liu, Y., A. P. Hu, and U. Madawala, "Determining the power distribution between two coupled coils based on Poynting vector analysis," IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, May 20–22, 2017.
21. Guo, Y. S., et al. "Poynting vector analysis for wireless power transfer between magnetically coupled coils with different loads," Sci. Rep., Vol. 7, No. 741, 1-6, 2017.
22. Jin, J.-M., Theory and Computation of Electromagnetic Fields, Wiley, Hoboken, 2010.
doi:10.1002/9780470874257
23. Kiani, M., U. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 6, 579-591, 2011.
doi:10.1109/TBCAS.2011.2158431
24. Zhang, B., R.-H. Huang, and X.-J. Shu, Principle of Wireless Power Transmission, Science Press, Beijing, 2018.