Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-09
Analysis of Multiplication Characteristics of Coaxial Waveguide Loaded Ceramic Under External Electric Field
By
Progress In Electromagnetics Research M, Vol. 86, 27-37, 2019
Abstract
Multipacting is electron discharge that occur in components operating in RF high-power electromagnetic fields. In this paper, we will study on a new coaxial structure with ceramic window. A similar structure is utilized in many high power devices for power transfer. Due to the multipactor effect, it will generate huge heat and cause damage to the window, ultimately affect the performance of microwave devices. In order to suppress of the surface multipactor effect and improve the transmitting power, the application of an external DC bias is analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a ceramic window in a coaxial line by using 2-D particles distribution code. Since secondary electron multiplication needs to meet specific resonance conditions, an appropriate DC bias will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external bias voltage that will avoid the multipactor phenomenon in the coaxial line will be calculated by simulation in MATLAB.
Citation
Long Yao, Long Yao, Yong Wang, and Xue Zhang, "Analysis of Multiplication Characteristics of Coaxial Waveguide Loaded Ceramic Under External Electric Field," Progress In Electromagnetics Research M, Vol. 86, 27-37, 2019.
doi:10.2528/PIERM19071508
References

1. Vaughan, J., "Multipactor," IEEE Trans. Electron Devices, Vol. 35, No. 7, 1172-1180, July 1988.
doi:10.1109/16.3387

2. Semenov, V. E., E. I. Rakova, D. Anderson, M. Lisak, and J. Puech, Phys. Plasmas, Vol. 14, 033501, 2007.

3. Sazontov, A. G. and V. E. Nevchaev, Phys. Plasmas, Vol. 17, 033509, 2010.

4. A., G. Dadashzadeh, M. Shahabadi, B. Gimeno, Frotanpour, Vol. 58, 876, IEEE Trans. Electron Devices, 2011.

5. Y. "Saito," IEEE Trans. Dielectr. Electr. Insul., Vol. 2, 243, 1995.

6. Padamsee, H., J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, Wiley, Inc., New York, 1998.

7. Nayaiesh, A. R., E. L. Garwin, F. K. King, and R. E. Kirby, "Properties of thin anti-multipactor coatings for klystron windows,", SLAC-PUB-3760, 1985.

8. Proch, D., D. Einfeld, R. Onken, and N. Steinhauser, "Measurement of multipacting currents of metal surfaces in RF fields," IEEE Proceedings, WPQ24, PAC 95, 1776, 1996.

9. YlaOijala, P., "Suppressing electron multipacting in coaxial lines by DC voltage," TESLA Reports 97-21, 1-14, 1997.

10. YlaOijala, P. and M. Ukkola, "Suppressing electron multipacting in ceramic windows by DC bias," Nuclear Instruments & Methods in Physics Research, Section A, (Accelerators, Spectrometers, Detectors and Associated Equipment), Vol. 474, No. 3, 197-208, 2001.
doi:10.1016/S0168-9002(01)00882-8

11. Riyopoulos, S., "Multipactor saturation due to space-charge-induced debunching," Physics of Plasmas, Vol. 4, No. 5, 1448, 1997.
doi:10.1063/1.872319

12. Li, Q., Y. H. Zhang, L. Qu, and Y. Fan, "Quasi-static analysis of multilayer dielectrics filled coaxial line using conformal mapping method," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), 2018.

13. Somersalo, E., P. Yla-Oijala, D. Proch, and J. Sarvas, "Computational methods for analyzing electron multipacting in RF structures," Partiale Accel., Vol. 59, 107-141, August 1998.

14. Perez, A. M., et al. "Prediction of multipactor breakdown thresholds in coaxial transmission lines for traveling, standing, and mixed waves," IEEE Trans. Plasma Sci., Vol. 37, No. 10, 2031-2040, October 2009.
doi:10.1109/TPS.2009.2028428

15. Gonzalez-Iglesias, D., M. P. B. Rodrıguez, O. M. Belda, and B. Gimeno, "Analysis of multipactor effect using a phase-shift keying single-carrier digital modulated signal,", Vol. 60, No. 8, 2664-2670, August 2013.
doi:10.1109/TED.2013.2266275

16. Kishek, R. A. and Y. Y. Lau, Phys. Rev. Lett., Vol. 80, 193, 1998.
doi:10.1103/PhysRevLett.80.193

17. Lau, Y. Y., R. A. Kishek, L. K. Ang, R. M. Gilgenbach, and A. Valfells, "Multipactor discharge on a dielectric," IEEE International on Plasma Science, Anniversary, IEEE, 2002.

18. Zhang, X., Y. Wang, and J. Fan, "The suppression effect of external magnetic field on the highpower microwave window multipactor phenomenon," Physics of Plasmas, Vol. 22, No. 2, 022110, 2015.
doi:10.1063/1.4907248

19. Saito, Y., "Surface breakdown phenomena in alumina RF windows," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, No. 2, 243-250, 1995.
doi:10.1109/94.388247

20. Seviour, R., "The role of elastic and inelastic electron reflection in multipactor discharges," IEEE Transactions on Electron Devices, Vol. 52, No. 8, 1927-1930, 2005.
doi:10.1109/TED.2005.851854

21. Chen, F. F., Introduction to Plasma Physics, Plenum Press, New York, 1974.

22. Gaponov, A. V. and M. A. Miller, "On the potential well for charged particles in a highfrequency electromagnetic field," JETP Letters (translation of Pis’ma v Zkurnal Eksperimental ‘noi i Teoreticheskoi Fiziki), Vol. 7, 242-243, 1958.

23. Lobaev, M. A., O. A. Ivanov, V. A. Isaev, et al. "Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric," Technical Physics Letters, Vol. 35, No. 12, 1074-1077, 2009.
doi:10.1134/S1063785009120025