Vol. 87
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-10-30
A Dual-Mode Resonator-Fed Gap Coupled Filtering Antenna with Improved Selectivity and Bandwidth
By
Progress In Electromagnetics Research Letters, Vol. 87, 137-143, 2019
Abstract
A novel multi-mode resonator-fed filtering patch antenna with improved selectivity and bandwidth is proposed in this paper. Unlike well-known cascaded-resonator structure, the proposed filtering antenna shows five poles in the reflection coefficient response utilizing only one resonator. The gap-coupled radiating part introduces two gain zeros along each side of the gain response. Meanwhile, the dual-mode resonator feeding structure of the antenna will also produce another two gain zeros. All these four gain zeros highly improve the selectivity of the filtering antenna without increasing the number of coupling resonators. In addition, the bandwidth of the antenna is also considerably extended using this feeding structure. For validation, a prototype is designed, fabricated, and measured. The measured results agree well with the simulated ones.
Citation
Yun Wang, Ya-Liang Chen, Jian-Feng Qian, and Yan Cao, "A Dual-Mode Resonator-Fed Gap Coupled Filtering Antenna with Improved Selectivity and Bandwidth," Progress In Electromagnetics Research Letters, Vol. 87, 137-143, 2019.
doi:10.2528/PIERL19071507
References

1. Chuang, C.-T. and S.-J. Chung, "Synthesis and design of a new printed filtering antenna," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1036-1042, Mar. 2011.
doi:10.1109/TAP.2010.2103001

2. Lin, C.-K. and S.-J. Chung, "A filtering microstrip antenna array," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 11, 2856-2863, Nov. 2011.
doi:10.1109/TMTT.2011.2160986

3. Chen, F.-C., H.-T. Hu, R.-S. Li, Q.-X. Chu, and M. J. Lancaster, "Design of filtering microstrip antenna array with reduced sidelobe level," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 903-908, Feb. 2017.
doi:10.1109/TAP.2016.2639469

4. Mao, C.-X., et al. "Dual-band patch antenna with filtering performance and harmonic suppression," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 4074-4077, Sep. 2016.
doi:10.1109/TAP.2016.2574883

5. Zhang, X.-Y., W. Duan, and Y.-M. Pan, "High-gain filtering patch antenna without extra circuit," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5883-5888, Dec. 2015.
doi:10.1109/TAP.2015.2481484

6. Lin, C. K. and S. J. Chung, "A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response," IEEE Antennas Wireless Propag. Lett., Vol. 10, 381-384, 2011.

7. Duan, W., X. Y. Zhang, Y.-M. Pan, J.-X. Xu, and Q. Xue, "Dual-polarized filtering antenna with high selectivity and low cross polarization," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4188-4196, Oct. 2016.
doi:10.1109/TAP.2016.2594818

8. Wu, J., Z. Zhao, Z. Nie, and Q.-H. Liu, "A printed unidirectional antenna with improved upper band-edge selectivity using a parasitic loop," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1832-1837, Apr. 2015.
doi:10.1109/TAP.2015.2392112

9. Zhang, Y., X.-Y. Zhang, L.-H. Ye, and Y.-M. Pan, "Dual-band base station array using filtering antenna elements for mutual coupling suppression," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3423-3430, Aug. 2016.
doi:10.1109/TAP.2016.2574872

10. Tang, M.-C., Y. Chen, and R. W. Ziolkowski, "Experimentally validated, planar, wideband, electrically small, monopole filtennas based on capacitively loaded loop resonators," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3353-3360, Aug. 2016.
doi:10.1109/TAP.2016.2576499

11. Jin, J.-Y., S.-W. Liao, and Q. Xue, "Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2125-2130, Feb. 2018.
doi:10.1109/TAP.2018.2804661

12. Zhang, B. H. and Q. Xue, "Filtering antenna with high selectivity using multiple coupling paths from source/load to resonators," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4320-4325, May 2018.
doi:10.1109/TAP.2018.2839968

13. Mao, C.-X., et al. "An integrated filtering antenna array with high selectivity and harmonics suppression," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 6, 1798-1805, Jun. 2016.
doi:10.1109/TMTT.2016.2561925

14. Qian, J.-F., F.-C. Chen, Q.-X. Chu, Q. Xue, and M. J. Lancaster, "A novel electric and magnetic gap coupled broadband patch antenna with improved selectivity and its application in MIMO system," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5625-5629, Jul. 2018.
doi:10.1109/TAP.2018.2860129

15. Hu, H. T., F. C. Chen, and Q. X. Chu, "Novel broadband filtering slotline antennas excited by multi-mode resonators," IEEE Antennas Wireless Propag. Lett., Vol. 16, 489-492, 2017.
doi:10.1109/LAWP.2016.2585524

16. Lee, K. F., K. Y. Ho, and J. S. Dahele, "Circular-disk microstrip antenna with an air gap," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 880-884, Aug. 1984.
doi:10.1109/TAP.1984.1143428

17. Morabito, A. F., "Synthesis of maximum-efficiency beam arrays via convex programming and compressive sensing," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2404-2407, 2017.
doi:10.1109/LAWP.2017.2721218