Vol. 86
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-08-28
Differentially-Fed, Multi-Band Dual-Polarized Filtering Patch Antenna Without Extra Circuits
By
Progress In Electromagnetics Research Letters, Vol. 86, 129-136, 2019
Abstract
In this paper, a differentially-fed, multi-band patch antenna with bandpass filtering response is proposed. The antenna consists of two pairs of crossed dipoles, four Γ-shaped feedlines, and four steeped-impedance microstrip lines. With the introduction of Γ-shaped feedlines and U-shaped slots on the radiating patch, extra radiation nulls are induced, four operation bands with band-pass filtering response are obtained. More importantly, the filtering response of the antenna is generated without any filtering circuit, which is easy to design for antenna engineers. Measured results of the prototype show that the proposed antenna has stable radiation patterns with low cross-polarization of better than -26 dB. Besides, bandpass filtering response of the realized gain with deep roll-off can also be observed between different operation bands. Excellent radiating performance make it a promising candidate for 5G wireless communication systems.
Citation
Jianfang Deng, and Lanping Feng, "Differentially-Fed, Multi-Band Dual-Polarized Filtering Patch Antenna Without Extra Circuits," Progress In Electromagnetics Research Letters, Vol. 86, 129-136, 2019.
doi:10.2528/PIERL19071204
References

1. Yao, Z. H. and D. Chen, "A novel filtering antenna using dual-mode resonator," Progress In Electromagnetics Research Letters, Vol. 58, 113-118, 2016.
doi:10.2528/PIERL15111002

2. Mao, C. X., S. Gao, Y. Wang, et al. "A novel multiband directional antenna for wireless communications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1217-1220, 2016.
doi:10.1109/LAWP.2016.2628715

3. Mao, C. X., S. Gao, Y.Wang, et al. "A shared-aperture dual-band dual-polarized filtering-antenna-array with improved frequency response," IEEE Transactions on Antennas & Propagation, Vol. 65, 1836-1844, 2017.
doi:10.1109/TAP.2017.2670325

4. Qian, J. F., F. C. Chen, Y. H. Ding, et al. "A wide stopband filtering patch antenna and its application in MIMO system," IEEE Transactions on Antennas & Propagation, Vol. 67, 654-658, 2018.
doi:10.1109/TAP.2018.2874764

5. Tang, H., C. W. Tong, and J. X. Chen, "Differential dual-polarized filtering dielectric resonator antenna," IEEE Transactions on Antennas & Propagation, Vol. 66, 4298-4302, 2018.
doi:10.1109/TAP.2018.2836449

6. Hu, P. F., Y. M. Pan, X. Y. Zhang, et al. "A compact quasi-isotropic dielectric resonator antenna with filtering response," IEEE Transactions on Antennas & Propagation, Vol. 67, 1294-1299, 2019.
doi:10.1109/TAP.2018.2883611

7. Hu, P. F., Y. M. Pan, X. Y. Zhang, et al. "A filtering patch antenna with reconfigurable frequency and bandwidth using F-shaped probe," IEEE Transactions on Antennas & Propagation, Vol. 67, 121-130, 2019.
doi:10.1109/TAP.2018.2877301

8. Zhang, X. Y., Y. Zhang, Y. M. Pan, et al. "Low-profile dual-band filtering patch antenna and its application to LTE MIMO system," IEEE Transactions on Antennas & Propagation, Vol. 65, 103-113, 2017.
doi:10.1109/TAP.2016.2631218

9. Lin, C. K. and S. J. Chung, "A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 381-384, 2011.
doi:10.1109/LAWP.2011.2147750

10. Li, Y., Z. Zhao, Z. Tang, and Y. Yin, "A low-profile, dual-band filtering antenna with high selectivity for 5G sub-6GHz applications," Microw. Opt. Technol. Lett., 1-6, 2019, https://doi.org/10.1002/mop.31891.

11. J. F. Q., F. C. Chen, and Q. X. Chu, "A novel tri-band patch antenna with broadside radiation and its application to filtering antenna," IEEE Transactions on Antennas & Propagation, Vol. 66, 5580-5585, 2018.
doi:10.1109/TAP.2018.2853160

12. Jin, J. Y., S. W. Liao, and Q. Xue, "Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity," IEEE Transactions on Antennas & Propagation, Vol. 66, 2125-2130, 2018.
doi:10.1109/TAP.2018.2804661

13. Ding, C. F., X. Y. Zhang, Y. Zhang, et al. "Compact broadband dual-polarized filtering dipole antenna with high selectivity for base station applications," IEEE Transactions on Antennas & Propagation, Vol. 66, 5747-5756, 2018.
doi:10.1109/TAP.2018.2862465

14. Alkurt, F. O., O. Altintas, A. Atci, et al. "Antenna-based microwave absorber for imagingin the frequencies of 1.8, 2.45, and 5.8 GHz," Optical Engineering, Vol. 57, 113102, 2018, doi: 10.1117/1.OE.57.8.087110.
doi:10.1117/1.OE.57.11.113102