Vol. 87
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-08-29
Miniaturized Microstrip Branch-Line Coupler with Good Harmonic Suppression Based on Radial Stub Loaded Resonators
By
Progress In Electromagnetics Research Letters, Vol. 87, 15-20, 2019
Abstract
In this paper, a novel miniaturized microstrip branch-line coupler (BLC) with good harmonic suppression using radial stub loaded resonators is proposed. The novel structure has two significant advantages, which not only effectively reduces the occupied area to 10.3% of the conventional BLC at 0.5 GHz, but also has high 14th harmonic suppression performance. The measured results indicate that a bandwidth of more than 121 MHz has been achieved while the phase difference between S21 and S31 is within 90° ± 1.5°. The measured bandwidth of |S21| and |S31| within 3 ± 0.4 dB are 146 MHz and 151 MHz, respectively. Furthermore, the measured insertion loss is comparable to that of a conventional BLC. To validate the design concept, a new miniaturized planar BLC with good harmonic suppression using radial stub loaded resonators is designed and fabricated. Simulated and experimental results are achieved with good agreement.
Citation
Hai Zhang, and Zhijie Zhang, "Miniaturized Microstrip Branch-Line Coupler with Good Harmonic Suppression Based on Radial Stub Loaded Resonators," Progress In Electromagnetics Research Letters, Vol. 87, 15-20, 2019.
doi:10.2528/PIERL19070103
References

1. Pozar, D. M., Microwave Engineering, 3rd Edition, Chap. 7, 333–337, Wiley, New York, 2005.

2. Mohra, A., A. F. Sheta, and S. F. Mahmoud, "New compact 3 dB 0/180 microstrip coupler configurations," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 19, No. 2, 108-112, Jul. 2004.

3. Xiao, B., J. Hong, and B. Wang, "A novel UWB out-of-phase four-way power divider," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 26, No. 10, 863-867, Oct. 2011.

4. Shamaileh, K. A., A. Qaroot, N. Dib, and A. Sheta, "Design of miniaturized unequal split Wilkinson power divider with harmonics suppression using non-uniform transmission lines," Applied Computational Electromagnetics Society Journal, Vol. 26, No. 6, 530-538, Jun. 2011.

5. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 10, 2119-2125, Oct. 2003.
doi:10.1109/TMTT.2003.817442

6. Mondal, P. and A. Chakrabarty, "Design of miniaturized branch-line and rat-race hybrid couplers with harmonics suppression," IET Microw. Antennas Propag., Vol. 3, No. 1, 109-116, Jan. 2009.
doi:10.1049/iet-map:20070202

7. Gu, J. and X. Sun, "Miniaturization and harmonic suppression of branch-line and rat-race hybrid coupler using compensating spiral compact microstrip resonant cell," IEEE MTT-S Int. Dig., 1211-1214, 2005.

8. Wang, J., B.-Z. Wang, Y. X. Guo, L. C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 7, 501-503, Jul. 2007.
doi:10.1109/LMWC.2007.899307

9. Velidi, V. K., B. Patel, and S. Sanval, "Harmonic suppressed compact wideband branch-line coupler using unequal length open-stub units," International Journal of RF and Microwave Computer- Aided Engineering, Vol. 21, No. 1, 115-119, Jan. 2011.
doi:10.1002/mmce.20495

10. Tsai, K. Y., H. S. Yang, J. H. Chen, and Y. J. Chen, "A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 10, 537-539, Oct. 2011.
doi:10.1109/LMWC.2011.2164901

11. Velidi, V. K., A. Pal, and S. Sanyal, "Harmonics and size reduced microstrip branch-line baluns using shunt open-stubs," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, No. 2, 115-119, Mar. 2011.
doi:10.1002/mmce.20495

12. Sha, S., Y. Ye, and Z. Zhang, "A novel microstrip branch-line coupler with wide suppression band," Progress In Electromagnetics Research Letters, Vol. 83, 139-143, 2019.
doi:10.2528/PIERL19021003

13. Nosrati, M., "An extremely miniaturized microstrip branch-line coupler," Microw. Opt. Tech. Lett., Vol. 51, No. 6, 1403-1406, 2009.
doi:10.1002/mop.24365

14. Kurgan, P., A. Bekasiewicz, and M. Kitlinski, "Slow-wave resonant structures in branch-line coupler miniaturization: A case study," 19th International Conference on Microwaves, Radar & Wireless Communications, 695-698, 2012.

15. Wang, J. P., L. Ge, Y.-X. Guo, and W. Wu, "Miniaturised microstrip lowpass filter with broad stopband and sharp roll-off," IET Electronics Letters, Vol. 46, 573-575, 2010.
doi:10.1049/el.2010.0329