1. Fleischmann, M., R. Gupta, D. Weckbecker, W. Landgraf, O. Pankratov, V. Meded, and S. Shallcross, "Moiré edge states in twisted graphene nanoribbons," Phys. Rev. B, Vol. 97, 205128, 2018.
doi:10.1103/PhysRevB.97.205128
2. Wu, Z. and Y. Zheng, "Moiré chiral metamaterials," Advanced Optical Materials, Vol. 5, 1700034, 2017.
doi:10.1002/adom.201700034
3. Wu, Z., Y. Liu, E. H. Hilla, and Y. Zheng, "Chiral metamaterials via Moiré stacking," Nanoscale, Vol. 10, No. 38, 18096-18112, 2018.
doi:10.1039/C8NR04352C
4. Han, J.-H., I. Kim, J.-W. Ryu, J. Kim, J.-H. Cho, G.-S. Yim, H.-S. Park, B. Min, and M. Choi, "Rotationally reconfigurable metamaterials based on moiré phenomenon," Opt. Express, Vol. 23, 17443-17449, 2015.
doi:10.1364/OE.23.017443
5. Belozorov, D. P., A. A. Girich, and S. I. Tarapov, "Analogue of surface Tamm states in periodic structures on the base of microstrip waveguides," The Radio Science Bulletin, Vol. 345, 64-72, 2013.
6. Belozorov, D. P., A. Girich, S. V. Nedukh, A. N. Moskaltsova, and S. I. Tarapov, "Microwave analogue of Tamm states in periodic chain-like structures," Progress In Electromagnetics Research Letters, Vol. 46, 7-12, 2014.
doi:10.2528/PIERL13122502
7. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, Inc., 2012.
8. Polevoy, S. Yu., "An experimental technique for estimating constitutive parameters of chiral media in the millimeter wavelength range," Telecommunications and Radio Engineering, Vol. 73, No. 8, 681-693, 2014.
doi:10.1615/TelecomRadEng.v73.i8.30