Vol. 86
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-07
An Investigation of Dual-Band Dual-Squarering (DSR) Based Microstrip Antenna for WiFi /WLAN and 5G-NR Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 86, 17-26, 2019
Abstract
In this work, a compact planar dual-square ring (DSR) microstrip patch antenna is investigated to acquire dual-band resonance with dual-mode excitation for Wi-Fi/WLAN and 5G-NR based wireless applications. This dual-square ring geometry is employed on single layer dielectric, excited through EM coupling by using a quadrilateral feed patch, which offers massive flexibility in impedance matching for dual-band resonance with minimum coupling effects in common excitation and ground plane. This planar DSR structure shows the resonance at 2.4 GHz and 3.7 GHz frequency bands with bandwidths greater than 100 MHz and 200 MHz, respectively and a maximum gain response of 4.3 dBi with VSWR of <<2. Here the simulation results are verified through experimental results of the fabricated antenna. This proposed antenna design can be configured for Wi-Fi/WLAN application at 2.4 GHz in lower-order resonance mode (TM01) and for 5G-NR application by utilizing the fringing benefits of higher-order mode (TM10) at 3.7 GHz.
Citation
Biswa Ranjan Swain, and Ashish Kumar Sharma, "An Investigation of Dual-Band Dual-Squarering (DSR) Based Microstrip Antenna for WiFi /WLAN and 5G-NR Wireless Applications," Progress In Electromagnetics Research M, Vol. 86, 17-26, 2019.
doi:10.2528/PIERM19060501
References

1. Liao, W.-J., S.-H. Chang, and L.-K. Li, "A compact planer multiband antenna for integrated mobile devices," Progress In Electromagnetic Research, Vol. 109, 1-16, 2010.
doi:10.2528/PIER10083001

2. Siddiqui, M. G., A. K. Saroj, Devesh, and A. Jamshed, "Multi-band fractaled triangular microstrip antenna for wireless applications," Progress In Electromagnetic Research M, Vol. 65, 51-60, 2018.
doi:10.2528/PIERM18011027

3. Agiwal, M., A. Roy, and N. Saxena, "Next generation 5G wireless networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1617-1655, 2016.
doi:10.1109/COMST.2016.2532458

4. Kumar, A. and H. Om, "Handover authentication scheme for device-to-device outband communication in 5G-WLAN next generation heterogeneous networks," Arab. J. Sci. Eng., Vol. 43, 7961-7977, Springer, 2018.
doi:10.1007/s13369-018-3255-6

5. Goudos, S. K., P. I. Dallas, S. Chatziefthymiou, et al. "A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications," Wireless Pers. Commun., Vol. 97, 1645-1675, Springer, 2017.
doi:10.1007/s11277-017-4647-8

6. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Edition, a John Wiley & Sons Inc. publication, 2003.

7. Garge, R., et al. Microstrip Antenna Design Handbook, Artech House, USA, 2001.

8. Antar, Y. M., A. I. Itipiboon, and A. K. Bhattacharyya, "A dual-frequency antenna using a single patch and as inclined slot," Microwave and Optical Technology Letters, Vol. 8, No. 6, 309-311, 1995.
doi:10.1002/mop.4650080613

9. Voon, C. S., K. H. Yeap, K. C. Lai, C. K. Seah, and H. Nisar, "A compact double-psi-shaped dualband patch antenna for WLAN/LTE applications," Microwave and Optical Technology Letters, Vol. 60, 1271-1275, 2018.
doi:10.1002/mop.31144

10. Smyth, B. P., S. Barth, and A. K. Iyer, "Dual-band microstrip patch antenna using integrated uniplanar metamaterial-based EBGs," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5046-5053, 2016.
doi:10.1109/TAP.2016.2618854

11. Agarwal, K. and S. Dutta, "Miniaturized circularly polarized stacked patch antenna on reactive impedance surface for dualband ISM andWiMAX applications," International Journal of Antennas and Propagation, Vol. 2015, 1-10, 2015.
doi:10.1155/2015/938565

12. Shi, W., Z. Qian, and W. Ni, "Dual-band stacked annular slot/patch antenna for omnidirectional radiation," IEEE Antennas Wireless Propagation Letters, Vol. 15, 390-393, 2016.
doi:10.1109/LAWP.2015.2447280

13. Kurniawan, A., I. Iskandar, and M. Prasetiyono, "A 2.3/3.3GHz dual band antenna design for WiMax applications," ITB Journal of Information and Communication Technology, Vol. 4, 67-78, 2010.
doi:10.5614/itbj.ict.2010.4.2.1

14. Tang, Y., W. Gao, J. Gao, and X. Feng, "Compact multi-band printed antenna with multitriangular ground plane for WLAN/WiMAX/RFID applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 277-281, 2016.
doi:10.1017/S1759078714001536

15. Kumar, P., S. Dwari, and P. S. Bakariya, "Tripple-band microstrip antenna for wireless application," Wireless Pers. Commun., Vol. 96, No. 1, 1029-1037, 2017.
doi:10.1007/s11277-017-4219-y

16. Behera, S. and D. Barad, "Circular polarized dual-band antenna forWLAN/Wi-MAX application," International Journal of RF and Microwave Computer Aided Engg., 1-7, Wiley, 2016.

17. Barad, D. and S. Behera, "Hybrid polarized microstrip antenna for multifrequency application," International Journal of RF and Microwave Computer Aided Engg., 1-9, Wiley, 2017.

18. Wolf, E. A., Antenna Analysis, Artech House, Norwood, USA, 1988.

19. Pozar, D. M., Microwave Engineering, 3rd Edition, a John Wiley & Sons Inc. publication, 2011.