Vol. 87
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-09-18
Simulation Study on Forward Problem of Magnetoacoustic Tomography with Magnetic Induction Based on Magnetic Nanoparticles
By
Progress In Electromagnetics Research Letters, Vol. 87, 75-80, 2019
Abstract
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a multiphysics imaging technique that combines electrical impedance imaging with ultrasound imaging. In order to study the influence of parameters on the source of MAT-MI , such as radius and permeability of magnetic nanoparticle clusters, the paper is divided into the following stages. Firstly, this paper analyzes the electromagnetic and acoustic properties of MAT-MI after adding magnetic nanoparticles. Secondly, to determine the suitable simulation conditions, a two-dimensional model is constructed. Thirdly, use the finite element method to solve physical processes of electromagnetic field and acoustic field under conditions of different magnetic nanoparticle clusters' radii and permeabilities, then obtain the magnetic flux density image. Consequently, make the qualitative and quantitative analysis according to the theory and simulation results. The results show that magnetic nanoparticle clusters interact with each other and distort the magnetic field to different degrees; its radius increases with the degree of flux density distortion around it, so does its permeability and magnetoacoustic signal intensity. The research results can play a guiding role in the parameter selection of magnetic nanoparticle clusters in practical applications to a certain extent.
Citation
Xiaoheng Yan, Ye Pan, Ying Zhang, and Sichen Guang, "Simulation Study on Forward Problem of Magnetoacoustic Tomography with Magnetic Induction Based on Magnetic Nanoparticles," Progress In Electromagnetics Research Letters, Vol. 87, 75-80, 2019.
doi:10.2528/PIERL19060309
References

1. Zhu, J., W. Yang, S. Wei, et al. "Progress of electromagnetic detection and imaging of magnetic nanoparticles," Chinese Journal of Biomedical Engineering, Vol. 37, No. 3, 344-352, 2018.

2. Lu, S., "Research progress of magnetic nanoparticles," Popular Science & Technology, Vol. 19, No. 3, 38-39, 2017.

3. Pankhurst, Q. A., J. Connolly, S. Jones, et al. "Applications of magnetic nanoparticles in biomedicine," Journal of Physics D: Applied Physics, Vol. 36, No. 13, R167, 2003.
doi:10.1088/0022-3727/36/13/201

4. Kalambur, V. S., B. Han, B. E. Hammer, et al. "In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications," Nanotechnology, Vol. 16, No. 8, 1221, 2005.
doi:10.1088/0957-4484/16/8/041

5. Ito, A., Y. Kuga, H. Honda, et al., "Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia," Cancer Letters, Vol. 212, No. 2, 167-175, 2004.
doi:10.1016/j.canlet.2004.03.038

6. Steinberg, I., M. Ben-David, and I. Gannot, "A new method for tumor detection using induced acoustic waves from tagged magnetic nanoparticles," Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 8, No. 5, 569-79, 2012.
doi:10.1016/j.nano.2011.09.011

7. Norton, S. J. and T. Vo-Dinh, "Imaging the distribution of magnetic nanoparticles with ultrasound," IEEE Transactions on Medical Imaging, Vol. 26, No. 5, 660-5, 2007.
doi:10.1109/TMI.2007.895476

8. Tsalach, A., I. Steinberg, and I. Gannot, "Tumor localization using magnetic nanoparticle-induced acoustic signals," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 8, 2313-2323, 2014.
doi:10.1109/TBME.2013.2286638

9. Oh, J., M. D. Feldman, J. Kim, et al. "Detection of magnetic nanoparticles in tissue using magnetomotive ultrasound," Nanotechnology, Vol. 17, No. 16, 167-175, 2006.
doi:10.1088/0957-4484/17/16/031

10. Xu, Y. and B. He, "Magnetoacoustic tomography with magnetic induction (MAT-MI)," Physics in Medicine & Biology, Vol. 50, No. 21, 5175, 2005.
doi:10.1088/0031-9155/50/21/015

11. Hu, G. and B. He, "Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation," Applied Physics Letters, Vol. 100, No. 1, 013704, 2012.
doi:10.1063/1.3675457

12. Mariappan, L., Q. Shao, C. L. Jiang, et al. "Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles," Nanomedicine- Nanotechnology Biology and Medicine, Vol. 12, No. 3, 689-699, 2016.
doi:10.1016/j.nano.2015.10.014

13. Yan, X. H., Y. Zhang, and G. Q. Liu, "Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction," Chinese Physics B, Vol. 27, No. 10, 2018.
doi:10.1088/1674-1056/27/10/104302

14. Pothayee, N., S. Balasubramaniam, R. Davis, et al. "Synthesis of ‘ready-to-adsorb’ polymeric nanoshells for magnetic iron oxide nanoparticles via atom transfer radical polymerization," Polymer, Vol. 52, No. 6, 1356-1366, 2011.
doi:10.1016/j.polymer.2011.01.047

15. Xu, H., S. Jones, B.-C. Choi, et al. "Characterization of individual magnetic nanoparticles in solution by double nanohole optical tweezers," Nano Letters, Vol. 16, No. 4, 2639-2643, 2016.
doi:10.1021/acs.nanolett.6b00288