Vol. 86
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-08-14
A Compact Microstrip Triplexer with a Novel Structure Using Patch and Spiral Cells for Wireless Communication Applications
By
Progress In Electromagnetics Research Letters, Vol. 86, 73-81, 2019
Abstract
In this work, a novel planar four-port microstrip triplexer is designed and analyzed to operate at 1.9 GHz, 2.5 GHz, and 3.35 GHz for wireless communication applications. The proposed structure consists of a compact patch and spiral cells. The main advantage of this triplexer is its very compact size, with a cross size of only 15 mm×15 mm (0.017λg2). Sharp frequency response at the edges of all passbands, low insertion losses (0.25 dB, 0.4 dB and 0.11 dB), and high return losses (45 dB, 54 dB and 40 dB) in all channels are the other advantages of the designed triplexer. Additionally, the triplexer has reasonable isolations (S23, S24, S34), better than 20 dB. To verify the design method, both EM simulation and measurement results are obtained. The comparison shows that the measured and simulated results are in good agreement, which proves the feasibility of this work.
Citation
Abbas Rezaei, Salah Yahya, Saman Moradi, and Mohd Haizal Jamaluddin, "A Compact Microstrip Triplexer with a Novel Structure Using Patch and Spiral Cells for Wireless Communication Applications," Progress In Electromagnetics Research Letters, Vol. 86, 73-81, 2019.
doi:10.2528/PIERL19060104
References

1. Rezaei, A. and L. Noori, "Novel microstrip quadruplexer with wide stopband for WiMAX applications," Microw. Opt. Technol. Lett., Vol. 60, No. 6, 1491-1495, 2018.
doi:10.1002/mop.31187

2. Chen, C.-F., T.-M. Shen, T.-Y. Huang, and R.-B. Wu, "Design of compact quadruplexer based on the tri-mode net-type resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 10, 534-536, 2011.
doi:10.1109/LMWC.2011.2165278

3. Noori, L. and A. Rezaei, "Design of a compact narrowband quad-channel diplexer for multi-channel long-range RF communication systems," Analog Integrated Circuits and Signal Processing, Vol. 94, No. 1, 1-8, 2018.
doi:10.1007/s10470-017-1063-7

4. Hsu, K.-W., W.-C. Hung, and W.-H. Tu, "Design of four-channel diplexer using distributed coupling technique," Microw. Opt. Technol. Lett., Vol. 58, 166-170, 2016.
doi:10.1002/mop.29516

5. Rezaei, A. and L. Noori, "Novel low-loss microstrip triplexer using coupled lines and step impedance cells for 4G and WiMAX applications," Turkish Journal of Electrical Engineering & Computer Sciences, No. 26, 1871-1880, 2018.
doi:10.3906/elk-1708-48

6. El-Tokhy, A., R. Wu, and Y. Wang, "Microstrip triplexer using a common triple-mode resonator," Microw. Opt. Technol. Lett., Vol. 60, No. 7, 1815-1820, 2018.
doi:10.1002/mop.31244

7. Chen, C.-F., T.-M. Shen, T.-Y. Huang, and R.-B. Wu, "Design of multimode net-type resonators and their applications to filters and multiplexers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 848-856, 2011.
doi:10.1109/TMTT.2011.2109392

8. Jin, X. and Z. Yan, "Microstrip triplexer and switchable triplexer using new impedance matching circuits," Int. J. RF Microw. Comput. Aided Eng., Vol. 27, e21057, doi:10.1002/mmce.21057.

9. Percaz, J. M., M. Chudzik, I. Arnedo, I. Arregui, F. Teberio, M. A. G. Laso, and T. Lopetegi, "Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 873-876, 2015.

10. Tang, C.W. and M. G. Chen, "Packaged microstrip triplexer with star-junction topology," Electron. Lett., Vol. 48, 699-701, 2012.
doi:10.1049/el.2012.0469

11. Huang, Y., G. Wen, and J. Li, "Compact microstrip triplexer based on twist-modified asymmetric split-ring resonators," Electron. Lett., Vol. 50, 1712-1713, 2014.
doi:10.1049/el.2014.2805

12. Wu, H.-W., S.-H. Huang, and Y.-F. Chen, "Compact microstrip triplexer based on coupled step impedance resonator," IEEE MTT-S International Microwave Symposium Digest (IMS), 2013.

13. Chen, F.-C., J.-M. Qiu, H.-T. Hu, Q.-X. Chu, and M. J. Lancaster, "Design of microstrip lowpassband-pass triplexer with high isolation," IEEE Microw. Wirel. Compon. Lett., Vol. 25, No. 12, 805-807, 2015.
doi:10.1109/LMWC.2015.2496797

14. Deng, P.-H., M.-I. Lai, S.-K. Jeng, and Ch. H. Chen, "Design of matching circuits for microstrip triplexers based on stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4185-4192, 2006.
doi:10.1109/TMTT.2006.886161

15. Lin, S. C. and C. Y. Yeh, "Design of microstrip triplexer with high isolation based on parallel coupled-line filters using T-shaped short-circuited resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 25, No. 10, 648-650, 2015.
doi:10.1109/LMWC.2015.2463215

16. Sugchai, T., I. Nattapong, and C. Apirun, "Design of microstrip triplexer using common dual-mode resonator with multi-spurious mode suppression for multiband applications," Appl. Mech. Mater, Vol. 763, 182-188, 2015.
doi:10.4028/www.scientific.net/AMM.763.182

17. Zhu, C., J. Zhou, and Y. Wang, "Design of microstrip planar triplexer for multimode/multi-band wireless systems," Microwave J., 1-19, 2010.

18. Wu, J.-Y., K.-W. Hsu, Y.-H. Tseng, and W.-H. Tu, "High-isolation microstrip triplexer using multiple-mode resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 4, 173-175, 2012.
doi:10.1109/LMWC.2012.2189101

19. Chinig, A., A. Errkik, L. El Abdellaoui, A. Tajmouati, J. Zbitoum, and M. Latrach, "Design of a microstrip diplexer and triplexer using open loop resonators," J. Microw. Optoelectron. Electromagn. Appl., Vol. 16, No. 2, 65-80, 2016.
doi:10.1590/2179-10742016v15i2602

20. Karlsson, M., P. HÅkansson, and S. Gong, "A frequency triplexer for ultra-wideband systems utilizing combined broadside- and edge-coupled filters," IEEE Trans. Adv. Packag., Vol. 31, No. 4, 794-801, 2008.
doi:10.1109/TADVP.2008.2004415