1. Zarko, V. E. and A. A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application, Elsevier, 2016.
2. Sundaram, D. S., V. Yang, and E. Zarko, "Combustion of nano aluminum particles (review)," Comb. Expl. Shock. Waves, Vol. 51, No. 2, 173-196, 2015.
doi:10.1134/S0010508215020045
3. Muthu Gnana Theresa Nathan, D., S. Jacob Melvin Boby, P. Basu, R. Mahesh, S. Harish, S. Joseph, and P. Sagayaraj, "One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications," Appl. Surf. Sci., Vol. 449, 474-484, 2018.
4. Wilmański, A., M. Bućko, Z. Pedzich, and J. Szczerba, "Salt-assisted SHS synthesis of aluminium nitride powders for refractory applications," J. Mater. Sci. Chem. Eng., Vol. 2, No. 10, 26-31, 2014.
5. Jeong, T., K. H. Kim, S. J. Lee, S. H. Lee, S. R. Jeon, S. H. Lim, J. H. Baek, and J. K. Lee, "Aluminum nitride ceramic substrates-bonded vertical light-emitting diodes," IEEE Photon. Technol. Lett., Vol. 21, No. S3, 890-892, 2009.
doi:10.1109/LPT.2009.2020061
6. Hunt, W. H., "New directions in aluminum-based P/M materials for automotive applications," Int. J. Powd. Metal., Vol. 36, No. 6, 50-56, 2000.
7. Ilyin, A. P., L. O. Root, and A. V. Mostovshchikov, "Application of aluminum nanopowder for pure hydrogen production," Key Eng. Mater., Vol. 712, 261-266, 2016.
doi:10.4028/www.scientific.net/KEM.712.261
8. Tan, W. S., V. Bousquet, M. Kauer, K. Takahashi, and J. Heffernan, "InGaN-based blue-violet laser diodes using AlN as the electrical insulator," Jpn. J. Appl. Phys., Vol. 48, No. 7R, 072102, 2009.
doi:10.1143/JJAP.48.072102
9. Aruna, S. T. and A. S. Mukasyan, "Combustion synthesis and nanomaterials," Curr. Opin. Solid State Mater. Sci., Vol. 12, 44-50, 2008.
doi:10.1016/j.cossms.2008.12.002
10. Li, L., A. P. Ilyin, F. A. Gubarev, A. V. Mostovshchikov, and M. S. Klenovskii, "Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor," Ceram. Int., Vol. 44, No. 16, 19800-19808, 2018.
doi:10.1016/j.ceramint.2018.07.237
11. Gubarev, F. A., M. S. Klenovskii, L. Li, A. V. Mostovshchikov, and A. P. Ilyin, "High-speed visualization of nanopowder combustion in air," Opt. Pura Apl., Vol. 51, No. 4, 51003:1-7, 2018.
doi:10.7149/OPA.51.4.51003
12. Gubarev, F. A., A. V. Mostovshchikov, M. S. Klenovskii, A. P. Il'in, and L. Li, "Copper bromide laser monitor for combustion processes visualization," 2016 Progress In Electromagnetic Research Symposium (PIERS), 2666-2670, Shanghai, China, August 8-11, 2016.
13. McNesby, K. L., B. E. Homan, R. A. Benjamin, V. M. Boyle, J. M. Densmore, and M. M. Biss, "Invited article: Quantitative imaging of explosions with high-speed cameras," Rev. Sci. Instrum., Vol. 87, No. 5, 051301, 2016.
doi:10.1063/1.4949520
14. Abdel-Hafez, A. A., M. W. Brodt, J. R. Carney, and J. M. Lightstone, "Laser dispersion and ignition of metal fuel particles," Rev. Sci. Instrum., Vol. 82, No. 6, 064101, 2011.
doi:10.1063/1.3598341
15. Chen, Y., D. R. Guildenbecher, K. N. G. Hoffmeister, M. A.Cooper, H. L. Stauffacher, M. S.Oliver, and E. B. Washburn, "Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry," Combust. Flame, Vol. 82, 225-237, 2017.
doi:10.1016/j.combustflame.2017.04.016
16. Plantier, K. B., M. L. Pantoya, and A. E. Gash, "Combustion wave speeds of nanocomposite Al/Fe2O3: The effects of Fe2O3 particle synthesis technique," Combust. Flame, Vol. 140, No. 4, 299-309, 2005.
doi:10.1016/j.combustflame.2004.10.009
17. Lynch, P., G. Fiore, H. Krier, and N. Glumac, "Gas-phase reaction in nanoaluminum combustion," Combust. Sci. Technol., Vol. 182, No. 7, 842-857, 2010.
doi:10.1080/00102200903341561
18. Little, C. E., Metal Vapor Lasers: Physics, Engineering and Applications, John Willey & Sons Ltd., 1999.
19. Kazaryan, M. A., V. M. Batenin, V. V. Buchanov, A. M. Boichenko, I. I. Klimovskii, and E. I. Molodykh, High Brightness Metal Vapor Lasers: Physics and Applications, CRC Press, 2017.
20. Withford, M. J., D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, "Advances in copper laser technology: Kinetic enhancement," Prog. Quant. Electron., Vol. 28, No. 3-4, 165-196, 2004.
doi:10.1016/j.pquantelec.2003.12.001
21. Biswal, R., G. K. Mishra, P. K. Agrawal, S. V. Nakhe, and S. K. Dixit, "Studies on the spectral purity of copper-hydrogen bromide laser radiations," Appl. Opt., Vol. 52, No. 14, 3269-3278, 2013.
doi:10.1364/AO.52.003269
22. Gubarev, F. A., L. Li, M. S. Klenovskii, and D. V. Shiyanov, "Spatial-temporal gain distribution of a CuBr vapor brightness amplifier," Appl. Phys. B, Vol. 122, 284, 2016.
doi:10.1007/s00340-016-6559-9
23. Nekhoroshev, V. O., V. F. Fedorov, G. S. Evtushenko, and S. N. Torgaev, "Copper bromide vapour laser with a pulse repetition rate up to 700 kHz," Quantum Electron., Vol. 42, No. 10, 877-879, 2012.
doi:10.1070/QE2012v042n10ABEH014897
24. Gubarev, F. A., V. F. Fedorov, K. V. Fedorov, D. V. Shiyanov, and G. S. Evtushenko, "Copper bromide vapour laser with an output pulse duration of up to 320 ns," Quantum Electron., Vol. 46, No. 1, 57-60, 2016.
doi:10.1070/QE2016v046n01ABEH015707
25. Astadjov, D. N., K. D. Dimitrov, D. R. Jones, V. K. Kirkov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, "Copper bromide laser of 120 W average output power," IEEE J. Quantum Electron., Vol. 33, No. 5, 705-709, 1997.
doi:10.1109/3.572143
26. Skripnichenko, A. S., A. N. Soldatov, and N. A. Yudin, "Method of two-pulse frequency regulation of copper-vapor laser parameters," J. Russ. Las. Res., Vol. 16, No. 2, 134-137, 1995.
doi:10.1007/BF02580866
27. Petrash, G. G., Optical Systems with Brightness Amplifiers, Nauka, 1991.
28. Buzhinsky, R. O., V. V. Savransky, K. I. Zemskov, A. A. Isaev, and O. I. Buzhinsky, "Observation of objects under intense plasma background illumination," Plasma Phys. Rep., Vol. 36, No. 13, 1269-1271, 2010.
doi:10.1134/S1063780X10130295
29. Abramov, D. V., S. M. Arakelian, A. F. Galkin, I. I. Klimovskii, A. O. Kucherik, and V. G. Prokoshev, "On the possibility of studying the temporal evolution of a surface relief directly during exposure to high-power radiation," Quantum Electron., Vol. 36, No. 6, 569-575, 2006.
doi:10.1070/QE2006v036n06ABEH006579
30. Kuznetsov, A. P., R. O. Buzhinskij, K. L. Gubskii, A. S. Savjolov, S. A. Sarantsev, and A. N. Terekhin, "Visualization of plasma-induced processes by a projection system with a Cu-laser-based brightness amplifier," Plasma Phys. Rep., Vol. 36, No. 5, 428-437, 2010.
doi:10.1134/S1063780X10050090
31. Gubarev, F. A., M. S. Klenovskii, and L. Li, "A mirror based scheme laser projection microscope," IOP Conf. Series: Materials Science and Engineering, Vol. 81, 012016, 2016.
doi:10.1088/1757-899X/124/1/012016
32. Mironov, E. G., Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, "Titanium nano-antenna for high-power pulsed operation," J. Lightwave Technol., Vol. 31, No. 15, 2459-2466, 2013.
doi:10.1109/JLT.2013.2261281