Vol. 84
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-26
Low RCS Multi-Bit Coding Metasurface Modeling and Optimization: MoM -GEC Method in Conjunction with Genetic Algorithm
By
Progress In Electromagnetics Research M, Vol. 84, 107-116, 2019
Abstract
We propose a new approach to design multi-bit coding metasurfaces (MSs) for broadband terahertz scattering reduction. An anisotropic graphene-based element with multiple reflection phase responses is modeled using the Method of Moments combined with the Generalized Equivalent Circuit's approach (MoM-GEC). The multi-level reflection phase response is adjusted by tuning the graphene chemical potential of each cell. On the first hand, based on the coding metamaterials concept, 1-bit MS building blocks are nominated as ``0'' and ``1'' elements with opposite phase responses 0˚ and 180˚, respectively. Therefore, genetic algorithm (GA) is employed to search the optimal reflection phase matrix and determine the best coding metasurface layout. In order to validate our design strategy, 4x4, 8x8, 16x16, 32x32, and 64x64 arrays (MS) are modeled and show a great agreement with the desired low Radar cross section (RCS). On the other hand, 2-bit and 3-bit coding metasurface are then designed using two different sets of reflection phases {0, 60, 120, 180} and {0, 30, 60, 90, 120, 150, 180, 210}, respectively.
Citation
Imen Soltani, Takoua Soltani, and Taoufik Aguili, "Low RCS Multi-Bit Coding Metasurface Modeling and Optimization: MoM -GEC Method in Conjunction with Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 84, 107-116, 2019.
doi:10.2528/PIERM19053006
References

1. Achouri, K. and C. Caloz, "Space-wave routing via surface waves using a metasurface system," Sci. Rep., Vol. 8, No. 1, 1-9, 2018.

2. Zhu, W., F. Xiao, M. Kang, and M. Premaratne, "Coherent perfect absorption in an all-dielectric metasurface," Appl. Phys. Lett., Vol. 108, No. 12, 1-5, 2016.

3. Wu, K., P. Coquet, Q. J. Wang, and P. Genevet, "Modelling of free-form conformal metasurfaces," Nat. Commun., Vol. 9, No. 1, 1-8, 2018.

4. Akgol, O., E. Ünal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, "Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal," Optik, Vol. 161, No. 10 1968, 12-19, 2018.

5. Deng, Z.-L. and G. Li, "Metasurface optical holography," Mater. Today Phys., Vol. 3, No. 5 9 2011, 16-32, 2017.

6. Jafar-Zanjani, S., S. Inampudi, and H. Mosallaei, "Adaptive genetic algorithm for optical metasurfaces design," Sci. Rep., Vol. 8, No. 1, 1-16, 2018.

7. Nye, N. S., A. Swisher, C. Bungay, et al. "Design of broadband anti-reflective metasurfaces based on an effective medium approach," Proc. SPIE 10181, Advanced Optics for Defense Applications: UV through LWIR II, 101810J, Anaheim, California, United States, 2017.

8. Pulido-Mancera, L., P. T. Bowen, M. F. Imani, et al. "Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling," Phys. Rev. B, Vol. 96, No. 235402, 1-14, 2017.

9. Wu, K., P. Coquet, Q. J. Wang, et al. "Modelling of free-form conformal metasurfaces," Nat. Commun., Vol. 9, No. 3494, 1-8, 2018.

10. Cui, T. J., M. Q. Qi, X. Wan, J. Zhao, Q. Cheng, K. T. Lee, J. Y. Lee, S. Seo, L. J. Guo, Z. Zhang, Z. You, and D. Chu, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light Sci. Appl., Vol. 3, No. 10, 1-9, 2014.

11. Feng, Y., K. Chen, B. Zhu, J. Zhao, T. Jiang, and L. Cui, "Coding metasurface for broadband microwave scattering reduction with optical transparency," Opt. Express., Vol. 25, No. 5, 5571-5579, 2017.

12. Ünal, E. and G. Altıntarla, "Smart monopole antenna with pattern and frequency reconfiguration characteristics based on programmable metasurface," Int. J. RF Microw. Comput. Eng., e21805, 2019.

13. Baudrand, H. and D. Bajon, "Equivalent circuit representation for integral formulations of electromagnetic problems," Int. J. Numer Model Electron Networks, Devices Fields, Vol. 15, No. 1, 23-57, 2002.

14. Hajji, M., M. Aidi, H. Krraoui, and T. Aguili, "Hybridization of generalized Po and Mom-Gec method for electromagnetic study of complex structures: Application to reflectarrays," Progress In Electromagnetics Research M, Vol. 45, 35-49, 2016.

15. Aidi, M., M. Hajji, B. Hamdi, and T. Aguili, "Graphene nanoribbon modeling based on MoM-GEC method for antenna applications in the terahertz range," 2015 World Symposium on Mechatronics Engineering and Applied Physics (WSMEAP), Vol. 2, 1-4, Sousse, 2015.

16. Ziegler, K., "Robust transport properties in graphene," Phys. Rev. Lett., Vol. 97, No. 26, 1-5, 2006.

17. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Waley and Sons, Inc., 2016.